

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 4 April 2015, Page No. 11246-11251

Manoj Nainwal1 IJECS Volume 4 Issue 4 April, 2015 Page No.11246-11251 Page 11246

Maintainability assurance in Software Product Lines

An Activity- Based Model
Manoj Nainwal1, Anurag Awasthi2

1Singhaniya University, School of Computer Science,

PacheriBari(Junjhunu), Rajasthan, India

Manoj.nainwal13@email.com

2School of Computer Science and Engineering, Chung-Ang University,

221, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea

author2@email.com
Abstract— Management of maintainability of software in Software Product Lines is still a problematic area. As its very important quality

attribute, there has to be a comprehensive basis for assessing and improving it. Several quality models have been proposed to quantify the

maintainability. Nevertheless, existing approaches are not activity based. We have proposed a set of activities and set of facts to calculate

maintainability in SPL (Software Product Lines) environment. Facts would have a cascaded effect on activities which in turn would have an effect

on the sub-factors of maintainability. We have conceptualized the set of activities and facts in the form of an activity based model

Keywords—Activity Based Model, Binding Time, Granularity, Multiplicity, Software Product Lines (SPL), Variability

I. INTRODUCTION

W ITH reference to the latest software quality model
proposed by ISO (International Standard Organization) i.e.
ISO/IEC 9126 model, maintainability is one of the six
characteristics. Other characteristics are Functionality,
Efficiency, Portability, Reliability and Usability. All these
characteristics are having their own sub characteristics
[13].Since the announcements of ISO/IEC 9126 model; many
researchers have added various dimensions to this model. A
new model has been designed for evaluating the software
quality. [3][15] gives the reference of activity- based quality
model. In addition to this model Bayesian network approach
has been used as an effective quantification approach to
quantify various attributes of ISO/IEC 9126 model. A lot of
research has been done to ensure better quantification.

 Software Product Lines are an attractive solution for

software development because they are economical and

adaptable to change. Clements and Northrop [17] defines SPL

as “a set of software intensive systems that share a common,

managed set of features and that are developed from a

common set of core assets in a prescribed way.” The selection

of a feature in a product can occur at different times, as

required by many development issues [18]. In this paper I

have conceptualized the maintainability of software product

line. In view of activity based quality model maintainability

will have implementation effects of four major dimensions

i.e. variability, granularity, multiplicity and binding time.

These four major dimensions are defined in software product

lines development. I have considered them as facts in activity

based model and conceptualized their effects on activities to

ensure maintenance or maintainability of SPL. This paper is

organized as follows. Section 1 is discussing the ISO/IEC

9126 model. It also discusses the maintainability and its sub

characteristics with the extended factors of each sub factors

which show the activities to ensure the relevance of sub

factors to measure the maintainability. Section 2 shows the

activity- facts based model and discusses the concept to have

a better understanding. Section 3 discusses the theoretical and

mathematical basis to apply the activity-facts based model to

quantify the maintainability of SPL. Section 4 discusses the

future work, limitations and conclusions.

II. ISO/IEC 9126 MODEL

 Efforts based quality measurement models are very

common. In these process models roles, activities and

artifacts play a very important role. Quality model such as

ISO 9126 is based on six parameters like functionality,

reliability, usability, efficiency, maintainability and

portability. Table 1 shows the characteristics and associated

sub- characteristics mentioned in ISO/IEC 9126 model. I

have considered this model as a base model for this paper and

for this study. In this model maintainability has four major

sub characteristics named analyzability, changeability,

stability and testability.

http://www.ijecs.in/

Manoj Nainwal1 IJECS Volume 4 Issue 4 April, 2015 Page No.11246-11251 Page 11247

TABLE 1

Characteristic Sub Characteristics

Functionality

Suitability

Accurateness

Interoperability

Compliance

Security

Reliability

Maturity

Fault tolerance

Recoverability

Usability

Understandability

Learnability

Operability

Attractiveness

Efficiency
Time Behaviour

Resource utilization

Maintainability

Analyzability

Changeability

Stability

Testability

Portability

Adaptability

Installability

Conformance

Replaceability

 Table 2 describes the maintainability and its sub-factors

expressed in ISO/IEC 9126. It also shows the proposed set of

activities related to each sub- factors of maintainability.

The contribution of these six parameters has some variations

with regard to the application domain and the software

company’s internal methods to maintain and develop

software. We have proposed a set of activities related to each

sub-factor. We have also proposed that these set of activities

affect the sub-factors and in turn the maintainability gets

affected. In order to quantify the values of sub-factors we

have assumed that all these sub-factors and set of activities

are variables. In section 3 we will present a mathematical

model to quantify all of them.

III. ACTIVITY-FACTS BASED MODEL

While measuring quality of a software product line four

major dimensions need to be taken care. These four

dimensions are:

1. Variability

2. Granularity

3. Multiplicity

4. Binding-time

 These four dimensions (facts) affect software quality

differently at different phases of software development. At

design level analyzability depends on code structure. This

code structure dictates the code readability and in turn code

readability defines the code complexity of the software.

Therefore in this paper we have taken these three as the

parameters to evaluate the analyzability. At the same time

these three factors related to code can be affected by the

variability inherently a necessary feature for software product

line engineering. In practice, variability can be observed in

code, in functions, in control flows, which we have defined

in next paragraph. Now a day’s feature rich applications are

in demand [12]. This demand is catered by the software

engineers by adopting the reusable components of a suite of

software packages. Future is the cloud based computing when

a software engineer will be able to find a component on cloud

and will be able to integrate it with its ongoing software.

 Another very interesting advancement in software

development field is the evolution of software product lines.

Now a company produces a feature oriented software

packages and its extensions over the period of time. As

features grow the quality of software product becomes a very

important aspect. In order to maintain the overall quality, SPL

quality metrics need to be developed. For SPL, the quality

metrics will be different in the sense that already existing

feature and its quality may be affected by the addition of or

removal of another feature of package.

 In this paper we are focusing on the aspects which may

affect the quality of software package in feature oriented SPL

development process. We will investigate granularity,

variability, multiplicity and binding time dependency. It has

been proposed to use activity-based quality models (ABQM)

in order to assess the quality [9].

 Here we have defined four sub-factors to assess

maintainability. These four sub-factors are further having

activities related to each sub-factors. We are proposing the

four above mentioned major dimensions as the facts because

these dimensions affect different major activities. We are

proposing that that these four attributes affect sub-factors of

maintainability as mentioned below:

Variability  Analyzability i.e. variability has a direct

effect on analyzability.

TABLE 2

REFERENCE TABLE TO EXPRESS MAINTAINABILITY AND ITS

SUB FACTORS

Quality Factor Sub- Factors Proposed set of activities

Maintainability Analyzability Code structure

Code readability

Code complexity

Changeability Document Readability

Implementation efforts

Documenting efforts

Stability New requirements

Enhancements

Optimization

Testability Observability of code

Isolation

Manoj Nainwal1 IJECS Volume 4 Issue 4 April, 2015 Page No.11246-11251 Page 11248

Granularity  Changeability i.e. granularity has a direct

effect on changeability.

 Multiplicity  Stability i.e. multiplicity has a direct effect

on stability.

Binding Time  Testability i.e. binding time effects

testability.

Four dimensional attribute of quality of software are:

1. Variability- David M. Weiss and Chi Lai define

Manoj Nainwal1 IJECS Volume 4 Issue 4 April, 2015 Page No.11246-11251 Page 11249

variability in product family development as “An

assumption about how members of a family may

differ from each other".

 Variability in data can be observed as a particular data

structure may vary from one product to another. Variability

in control flow is defined as variation of interaction pattern

from one product to another. Variability in function shows

that some functions may exist in some products and not in

others. Variability in product quality goals may be

understood as the variations of goals like security,

performance or modifiability from one product to another.

Variability in product environment means that the product

domain may impose specific requirements. Variability in

technology concerns the platform (OS, hardware,

dependency on middleware, user interface, and run-time

system for programming language) which may vary in a

similar way to function but with the technical point of view

[22][23].

By and large variability affects different aspects of quality

of software in SPL. In this paper we have proposed that

uncertainty in variability can affect the analyzability of

software, which in turn affects the maintainability of

software. In this paper we are considering the technical

variability and product level variability [22] [10].

2. Granularity- In Software Product Line development

main focus of the developer is on feature addition.

Fine grained coding practices make this easy [11]

[22] [23]. [27][28] explored the limitations in

implementing fine grained extended features. We

have suggested that fine grained extensions need

extra documenting efforts. But it makes document

more readable and in turn reduces the

implementation efforts in due course of

development process. In compositional approach to

implement SPL statement extensions [28] [27],

expression extensions, and signature changes show

obvious limitations. In annotative approach to

implement SPL shows obfuscated source code and

problem in annotating arbitrary code fragment

without considering its relevance [29] [30]. Hence

we are proposing that high granularity will provide

better feature management. Thus, granularity may

affect the overall maintainability of SPL.

3. Multiplicity- This is also known as the attribute of a

variation point. Multiplicity of a variation point

indicates the minimum number of elements of the

associated variant set. Variant set selection depends

on its multiplicity which can vary from 0 to 1.

4. Binding Time- It refers to the time at which the

decisions for a variation point are set. [19] In other

words it is the time at which features selection

occurs. There are many different binding times

available to a software designer e.g., compile time,

link time, and run time. A software development

technique that is used to implement a variation point

is called variability mechanism [20]. In a

continuously evolving product line, where binding

times may change based on existing, evolving, or

expanding domain requirements, this process is

error-prone and the code modifications are tedious

to track [21].

IV. THEORETICAL BASIS FOR

PROPOSED ACTIVITY FACTS BASED

MODEL

This section discusses the theoretical basis for activity facts

based model. We have assumed that at activity level four

major activities are there to ensure maintainability of

software. Under each major activity some sub activities are

defined. For example major activity “analyzability” can be

measured by 3 sub activities like “code complexity”, “code

readability”, and “code structure”. Here “code structure” is

the lowest sub activity. We have shown the effect with “+”

and “-“signs. “+” sign signifies the increased impact of the

fact on activities related to sub-factors. “-“sign signifies the

decreased impact.

 We include 4 impacts on each of the low level activities.

These facts together with their impacts are:

1. [VARIABILITY|DEPTH] + [CODE

COMPLEXITY]

The depth of variability will affect the level of code

complexity. As depth of variability will increase it will

increase code complexity or we can say that if code is

complex its affect will be directly reflected on the variability.

To implement high variability, which is a basic feature of any

software product line, code must be simple. To ensure high

variability you have to make coding simple as it can be

achieved by low coupling.

[CODE COMPLEXITY]

-

[CODE READABILITY]

-

[CODE STRUCTURE]

In the above diagram it is shown that code structure will

become complex if code readability is low. Similarly if code

readability is low code becomes very complex. This

decreases the variability.

2. [GRANULARITY | EFFORTS] _ [

DOCUMENTING EFFORTS]

The granularity directly affects the documenting efforts as

more granular the software documentation becomes large.

[DOCUMENTING EFFORTS]

+

[DOCUMENTING READABILITY]

+

[IMPLEMENTATION EFFORTS]

3. [MULTIPLICITY | VARIANCE] + [

NEW REQUIREMENTS]

New requirements need to be added to software to cope up

with the changing scenario, makes software having positive

multiplicity.

Manoj Nainwal1 IJECS Volume 4 Issue 4 April, 2015 Page No.11246-11251 Page 11250

[NEW REQUIREMENTS]

+

[ENHANCEMENTS]

+

[ERROR CORRECTION]

+

[OPTIMIZATION]

4. [BINDING-TIME | TIME INTERVAL] -

[OBSERVABILITY OF CODE]

This means binding time interval inversely affects the

observability of code.

V. RELATED WORK

[9] have discussed the activity based model for maintenance

of the software. This work has been the basis of my work in

context with SPL. [12] has discussed the variability

management as a challenge in Software Product Lines. [7]

[8] have discussed the multiplicity and its management in

SPL. [24] has through a light upon the term SPL and its

definitions. [21] [22] have discussed the principles and

practices in SPL development environment.

VI. CONCLUSION

In this paper a new approach to quantify the measurement of

maintainability in SPL is proposed. We have proposed the

activity based concept to analyze the effects of variability,

granularity, multiplicity and binding time on SPL

maintainability. We are currently working on the model to

couple it with Bayesian belief network to make it more

empirical. By incorporating fuzzy logic in this model, we

can propose an industry ready model to assure

maintainability in SPL.

REFERENCES

[1]. Efficient estimation of effort using machine-learning technique

for software cost S. Malathi,S. Sridhar, Indian Journal of
Science and Technology Vol. 5 No. 8 (August 2012) ISSN: 0974-

6846

[2]. enhancing software reliability of a complex software system
architecture using artificial neural-networks ensemble, parmod

kumar kapur, v. s. sarma yadavalli International Journal of

Reliability, Quality and Safety Engineering Vol. 18, No. 3 (2011)
271–284_c World Scientific Publishing Company

[3]. A Bayesian Network Approach to Assess and Predict Software
Quality Using Activity-Based Quality Models,Stefan Wagner,

Fakultät für Informatik ,Technische Universität München,

Garching b. München, Germany
[4]. Requirement Risk Level Forecast Using Bayesian Networks

Classifiers Isabel Mar´Ia Del ´Aguila International Journal of

Software Engineering and Knowledge Engineering Vol. 21, No.
2 (2011) 167–190_c ,World Scientific Publishing Company

[5]. A Study of Variability Spaces in Open Source Software ,Sarah

Nadi,David R. Cheriton School of Computer Science, University

of Waterloo, ON, Canada, 978-1-4673-3076-3/13, 2013 IEEE

[6]. Quantifying the Stability of Software Systems via Simulation in

Dependency Networks Weifeng Pan, Member, ACM, World
Academy of Science, Engineering and Technology 60 2011

[7]. Multiplicity Computing:A Vision of Software Engineering for

Next-Generation Computing Platform Applications
Cristian Cadar, Peter Pietzuch, and Alexander L. Wolf

Department of Computing, Imperial College London, London,

UK
[8]. David M. Weiss and Chi Tau Robert Lai. Software Product-Line

Engineering: A Family-Based Software Development Process.

AddisonWesley, 1999.
[9]. F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert,and J.-F.

Girard. An activity-based quality model for maintainability. In

Proc. 23rd International Conference on Software Maintenance

(ICSM '07). IEEE Computer Society Press, 2007.
[10]. S. Jarzabek and L. Shubiao. Eliminating Redundancies with a

"Composition with Adaptation" Meta-Programming Technique.

In ESEC/FSE. 2003..

[11]. G. Murphy et al. Separating Features in Source Code: an

Exploratory Study. In ICSE. 2001.

[12]. M. Rosenmüller, M. Kuhlemann, N. Siegmund, and H.
Schirmeier. Avoiding Variability of Method Signatures in

Software Product Lines: A Case Study. In GPCE Workshop on

Aspect-Oriented Product Line Engineering, 2007.
[13]. ISO/IEC 9126-1:2001, Software Engineering-Product Quality—

Part 1:Quality Model, Int’l Organization for Standardization,

2001, Available at www.iso.org.
[14]. M. Neil, B. Littlewood, and N. Fenton. Applying bayesian belief

networks to systems dependability assessment. Safety Critical

Systems Club Newsletter, 8(3), 1999.
[15]. N. E. Fenton, M. Neil, and J. G. Caballero. Using ranked nodes

to model qualitative judgments in Bayesian networks. IEEE

Transactions on Knowledge and Data Engineering, 19(10):1420-
1432, 2007.

[16]. F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert,and J.-F.

Girard. An activity-based quality model for maintainability. In
Proc. 23rd International Conference on Software Maintenance

(ICSM '07). IEEE Computer Society Press, 2007.

[17]. P. Clements and L. Northrop. Software Product Lines: Practices

and Patterns. Addison Wesley, 2001.

[18]. M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of
variability realization techniques. Software—Practice &

Experience, 35(8):705–754, 2005.

[19]. E. Dolstra, G. Florijn, and E. Visser. Timeline variability: The
variability of binding time of variation points. In Proc. of the 2003

Workshop on Software Variability Management (SVM), pages

119–122, Gronigen, The Netherlands, Feb. 2003.
[20]. I. Jacobson, M. Griss, and P. Jonsson. Software Reuse:

Architecture,Process and, Organization for Business Success.

Addison Wesley,1997.
[21]. R. van Ommering. Building product populations with software

components. In Proc. of the 24th International Conf. on Software

Engineering (ICSE), pages 255–265, Orlando, FL, May 2002.
[22]. SOFTWARE PRODUCT LINE

ENGINEERING FOUNDATIONS, PRINCIPLES

AND TECHNIQUES, POHL, KLAUS, BÖCKLE,
GÜNTER, LINDEN, FRANK J.

[23]. Analysis of a software product line architecture: an experience
report, Robyn R. Lutz , Gerald C. Gannod, The Journal of

Systems and Software 66 (2003) 253–267, Elsevier Science Inc.

[24]. Gannod, G.C., Lutz, R.R., Cantu, M., 2001. Embedded software
for a space interferometry system: Automated analysis of a

software product line architecture (invited). In: Proceedings of

the International Conference on Performance Computing and
Communications, pp. 145–150.

[25]. ISO, International Organization for Standardization, "ISO 9000-

2:1997, Quality Management and Quality Assurance Standards
—Part 2: Generic guidelines for the application of ISO 9001, ISO

9002 and ISO 9003", 1997.

[26]. J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactoring
of Legacy Applications. In ICSE, 2006.

[27]. C. Kästner, S. Apel, and D. Batory. A Case Study Implementing

Features Using AspectJ. In SPLC, 2007.
[28]. G. Murphy et al. Separating Features in Source Code: an

Exploratory Study. In ICSE. 2001.

[29]. H. Spencer and G. Collyer. #ifdef Considered Harmful or
Portability Experience With C News. In USENIX Conf., 1992.

[30]. Baxter and M. Mehlich. Preprocessor Conditional Removal by
Simple Partial Evaluation. In Proc. Working Conference on

Reverse Engineering. 2001.

[31]. ISO, International Organization for Standardization, "ISO 9000-
3:1998-Quality Management and Quality Assurance Standards –

Part 3: Guidelines for the application of ISO 9001_1994 to the

development, supply, installation and maintenance of computer
software (ISO 9000-3:1997)", 1998.

[32]. ISO, International Organization for Standardization, "ISO

9004:2000,Quality Management Systems-Guidelines for
performance improvements", 2000.

Manoj Nainwal is an MCA from IMS, Dehradun and has more than 10
years of industry and teaching experience. He is pursuing Ph. D. from

Singhania University, Rajasthan on the topic “Framework Development to

ensure security in Database Management Systems-A Refactoring

http://www.iso.org/

Manoj Nainwal1 IJECS Volume 4 Issue 4 April, 2015 Page No.11246-11251 Page 11251

Approach”. He has taught Software Engineering, RDMS, Object Oriented

Analysis and Design and Network Security to Graduate and Post Graduate
courses. He can be contacted at manoj.nainwal13@gmail.com.

Anuraag Awasthi is former Dean (Engineering & Technology), JV

Women’s University, Jaipur, former Director (MBA), IIMT, Dehradun. He

has more than 23 years experience, including 21 in industry, with his last

designation as AVP(HR) with Bharti Airtel group. He has led functions like

HR, Software Development, Quality, Testing, Information Security,

Customer Support and IT. He has a wide hands-on exposure in all sectors –
Govt., and Private, India and Abroad. He has a passion for Excellence in all

spheres of life. He is a CSQA, Six Sigma Black Belt, MCA, M.Sc. (TQM),

PGDHRM and PhD in Computers with specialization in Software Quality.

He can be reached at Anuraag_awasthi@hotmail.com.

mailto:manoj.nainwal13@gmail.com
mailto:Anuraag_awasthi@hotmail.com

