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Abstract: Haze brings troubles to many computer vision/graphics applications. It reduces the visibility of 

the scenes and lowers the reliability of outdoor surveillance systems; it reduces the clarity of the satellite 

images; it also changes the colors and decreases the contrast of daily photos, which is an annoying problem 

to photographers. Therefore, removing haze from images is an important and widely demanded topic in 

computer vision and computer graphics areas. The main challenge lies in the ambiguity of the problem. 

Haze attenuates the light reflected from the scenes, and further blends it with some additive light in the 

atmosphere. The target of haze removal is to recover the reflected light (i.e., the scene colors) from the 

blended light. This problem is mathematically ambiguous: there are an infinite number of solutions given the 

blended light. How can we know which solution is true? We need to answer this question in haze removal. 

Ambiguity is a common challenge for many computer vision problems. In terms of mathematics, ambiguity 

is because the number of equations is smaller than the number of unknowns. The methods in computer 

vision to solve the ambiguity can roughly categorized into two strategies. The first one is to acquire more 

known variables, e.g., some haze removal algorithms capture multiple images of the same scene under 

different settings (like polarizers).But it is not easy to obtain extra images in practice. The second strategy is 

to impose extra constraints using some knowledge or assumptions .All the images in this thesis are best 

viewed in the electronic version. This way is more practical since it requires as few as only one image. To 

this end, we focus on single image haze removal in this thesis. The key is to find a suitable prior. Priors are 

important in many computer vision topics. A prior tells the algorithm “what can we know about the fact 

beforehand” when the fact is not directly available. In general, a prior can be some statistical/physical 

properties, rules, or heuristic assumptions. The performance of the algorithms is often determined by the 

extent to which the prior is valid. Some widely used priors in computer vision are the smoothness prior, 

sparsity prior, and symmetry prior. In this thesis, we develop an effective but very simple prior, called the 

dark channel prior, to remove haze from a single image. The dark channel prior is a statistical property of 

outdoor haze-free images: most patches in these images should contain pixels which are dark in at least one 

color channel. These dark pixels can be due to shadows, colorfulness, geometry, or other factors. This prior 

provides a constraint for each pixel, and thus solves the ambiguity of the problem. Combining this prior with 

a physical haze imaging model, we can easily recover high quality haze-free images. 

 

Introduction 

Dark Channel Prior and Single Image Haze 

Removal 

We propose a novel prior - dark channel prior - 

for single image haze removal. The dark channel 

prior is based on the statistics of outdoor haze-free 

images. We find that, in most of the local regions 

which do not cover the sky, it is very often that 

some pixels (called dark pixels) have very low 

intensity in at least one color (RGB) channel. In 

hazy images, the intensity of these dark pixels in 

that channel is mainly contributed by the airlight. 

Therefore, these dark pixels can directly provide 
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an accurate estimation of the haze transmission. 

To improve the quality of the resulting 

transmission map, we develop a soft matting 

interpolation method. Various experiments show 

that we can recover a high quality haze-free image 

and produce a good depth map. Our approach is 

physically valid and is able to handle distant  

objects in heavily hazy images. We do not rely on 

significant variance of transmission or surface 

shading. The result contains few artifacts.we 

propose a single image haze removal algorithm 

using the dark channel prior. We show that the 

dark channel prior introduces an extra constraint 

to each pixel, providing an estimated transmission 

value. Then we develop a method called “soft 

matting” to refine this transmission map. We 

further propose a robust method to estimate the 

atmospheric light A, which is also based on the 

dark channel prior. We have seen the dark 

channels of haze-free images. But what does the 

dark channel of a hazy image look like? We can 

see that the dark channel of a hazy image is not 

dark (though we still use the name “dark 

channel”). The reason is the additive airlight: the 

dark pixels are brightened when the airlight is 

added. we also see that the dark channel 

approximately tells the haze thickness: it is 

brighter in where the haze is thicker. We show 

that this effect can be explained by combining the 

haze imaging equation and the dark channel prior, 

and the transmission and atmospheric light are 

estimated accordingly. 

 

II.Haze Imaging Model 

 

The haze imaging equation is given by : 

 

I(x) = J(x)t(x) + A(1 − t(x)).  

 

 The variables are explained in the following: 

1.  x = (x, y) is a 2D vector representing the 

coordinates (x, y) of a pixel’s position in the 

image. 

2.  I represents the hazy image observed. I(x) is a 

3D RGB vector of the color at a pixel The 

variables are explained in the following: 

1.  x = (x, y) is a 2D vector representing the 

coordinates (x, y) of a pixel’s position in the 

image. 

2.  I represents the hazy image observed. I(x) is a 

3D RGB vector of the color at a pixel. 

3.  J represents the scene radiance image. J(x) is a 

3D RGB vector of the color of the light reflected 

by the scene point at x. It would be the light seen 

by the observer if this light were not through the 

haze. So we often refer to the scene radiance J as a 

haze-free image.  

4.  t is a map called transmission or transparency 

of the haze. t(x) is a scalar in [0, 1]. Intuitively, 

t(x) = 0 means completely hazy and opaque, t(x) = 

1 means haze-free and completely clear, and 0 < 

t(x) < 1 means semi-transparent.  

5.  A is the atmospheric light. It is a 3D RGB 

vector usually assumed to be spatially constant. It 

is often considered as “the color of the 

atmosphere, horizon, or sky”.  

 

III.Related Works 

 

In computer vision, the methods to handle the 

ambiguity are roughly on two ways. The first way 

is to acquire more known variables, reducing the 

discrepancy between the number of equations and 

the number of unknowns. In haze removal, this is 

often by capturing two or more images of the 

scene. The second way is to use some knowledge 

or assumptions known beforehand, i.e., priors. 

The priors impose extra constraints/dependency 

among the unknown 

variables. In the following, we review the 

previous haze removal methods in both categories. 

We do not discuss the technical details of these 

methods. Instead, we are interested in how they 

introduce extra constraints. All the methods are  

reformulated in a same framework, though they 

may be expressed in different forms in the original 

works. We believe that this is helpful to better 

compare these methods 

 

V.Physical Model 

 

The haze imaging model is: 

 

I(x) = J(x)t(x) + A(1 − t(x)). 

In this appendix, we provide the physical 

derivation of this equation. The derivation is 

mainly following the method in. 

 

A.1 Scattering 

We begin with the micro picture of the 

phenomenon. The particles in the atmosphere 

scatter light. “Scattering” means that a particle 

absorbs a portion of the incident light and radiates 
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the absorbed light as a light source. Consider a 

small volume in atmosphere. According to the 

total light flux Φ scattered by a small volume is 

proportional to the incident flux E: 

Φ(λ) = β(λ)E(λ)ΔV. 

Here, E is the intensity of the incident light, Φ is 

the total scattered light flux, ΔV is the volume, β 

is the total scattering coefficient, and λ is the 

wavelength of the light, indicating the variables 

are wavelength-dependent. The total  

scattering coefficient β(λ) is determined by the 

particle material, size, shape, and concentration. 

Scattering is the basic reason for both direct 

attenuation and airlight. 

 

Comparisons with Previous Methods 

 

Next we compare with all the state-of-the-art 

methods in previous works. We show that our 

method outperforms them in various situations.we 

compare with the dichromatic method which 

requires two images taken in different 

atmospheric conditions. Our resultsis merely from 

the bottom left image. Though our method uses 

only one image, the recovered scene appears more 

natural and visually pleasing. Our depth map has 

no missing labels in the buildings.we compare 

with the polarization-based method which requires 

two polarized hazy images. Our result is from 

only one of the two images. We can see that our 

method recovers comparable details and contrast 

with the polarization-based method. Our result 

also appear less bluish. Moreover, recent work 

points out that the polarization-based method is 

not beneficial, because the polarizer reduces the 

exposure value and increasesthe noise level. The 

noise is further increased when the two images are 

combined. So if we use only one unpolarized 

image as input, the signal-to noise ratio (SNR) 

would be much higher.we compare with Kopf et 

al.’s work  which based on given 3D models of 

the scene. Our result does not require any 

geometric information. We notice that even with 

the given depth, their method cannot handle 

inhomogeneous haze. Because when β is not a 

constant, the transmission can not be obtained by 

given Figure. The limitations of our method are 

mainly due to two reasons: the failure of the dark 

channel prior, and the invalidity of the haze 

imaging equation. The dark channel prior is 

statistically based, so there is a chance that some 

patches or whole images does not obey this prior. 

The prior may fail when the scene objects are 

inherently gray or white, white marble in. In this 

case, our method may overestimate the thickness 

of the haze (underestimate the transmission). The 

recovered colors become more saturated than they 

should be. Another limitation is that the haze 

imaging equation may be invalid. It involves two 

situations: (i): channel-dependent transmission t, 

and (ii) no constant atmospheric light A. (i): 

Channel-dependent transmission. In the haze 

imaging equation, it is assumed that the scattering 

coefficient β is independent of the wavelength λ. 

But this is not true when the particles in 

atmosphere are too small. An example is the 

Rayleigh scattering: the particles are air molecules 

instead of dust or water droplet. In this case, the 

transmission t should be modified as channel-

dependent  

 

                                  tc(x) = e−βcd(x) 

where the scattering coefficients usually satisfy:  

                                    βr < βg < βb.  

And we can modify the haze imaging equation by: 

Ic(x) = Jc(x) tc(x) + Ac (1 − tc(x)).  

 

 
 

In Rayleigh Scattering, the blue channel 

transmission tb is often the smallest. So the distant 

objects often appears blush. Rayleigh Scattering is 

also the reason for the blue sky. If we follow the 

original haze imaging equation  to remove haze, 

the distant objects become bluish 

Notice that the nearer objects is less influenced. 

One way to  

fix this problem is to process each channel 

independently.  We can see that the bluish 

artifacts is removed. But this modification 

requires that each channel has its own dark pixels, 

which is less valid than the dark channel prior in 

some cases. (ii): nonconstant atmospheric light. 

The haze imaging equation may also be invalid 

when the atmospheric light A is nonconstant. We 

should modify it by: 
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I(x) = J(x)t(x) + A(x)(1 − t(x)) 

Where a(x) depends on the position. This is often 

due to point light sources like the sun and the 

street lights at night. The atmospheric light is 

stronger near the center of a point light source In 

this case our method may fail because our fixed 

atmospheric light is not correct in most positions 

of the image. 

 

 
 

 
 

 
 

Figure 1.1: Haze removal results (cityscapes). 

 

 
 

 

 
 

Figure 1.2: Defocusing on three different 

positions. The input image and depth map  

 

t = e−βd from the given depth. On the contrary, 

our method does not rely on the constant-β 

assumption. Our result appears clearer in the 

cloud-like area. Next we compare with single 

image methods. we compare with the dark object 

subtraction method. This method assumes a 

constant transmission, so it can only remove the 

haze of the nearest objects.The haze effects in the 

town is reduced at all because of the nearer trees. 

The result of this method the becomes better if the 

image is cropped . But the distant haze still 

remains. On the contrary, our method can remove 

the haze in each position we compare our 

approach with Tan’s visibility maximization 

method. The results of this method have over-

saturated colors. This is because the visibility is 

maximized only when some pixels’ intensity is 

brought below zero. On the contrary, our method 

recovers the scenes without severely changing the 

colors We also notice the apparent halo artifacts in 

Tan’s result. This is because the smoothness term 

in his MRF is not edge-aware. Fattal’s ICA 

method is the most competitive one. we show that 

our result is comparable with Fattal’s 

representative example in his paper. we show that 

our method outperforms Fattal’s in dense haze. 

His method is based on local statistics and 

requires sufficient color information and variance. 

When the haze is dense, the color is faint and the 

variance is not high enough for estimating the 

transmission shows Fattal’s results using the 

reliable transmission values: the reliable regions 

are sparse. The transmission is then extrapolated 

by MRF. But the results after extrapolation are 

still not satisfactory: some regions are too dark 

(see the mountains) and some haze is not removed 

(see the cityscape). On the contrary, our approach 

is more successful in both cases. This is because 
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our dark channel prior provides reliable estimation 

in much more regions than Fattal’s method. 

 

 
Figure 1.3: Comparison with the 3D-geometry-

based method. Left: input. Middle: the result of . 

Right: our result 

 

VI. Experimental Results 

 

In our experiments, we perform the local min 

operator using Marcel van Herk’s fast algorithm 

whose complexity is linear to image size. The 

patch size is set to 15 × 15 for a 600×400 

Equation  and are up to an unknown scaling 

parameter β. The atmospheric lights in these 

images are automatically estimated using the 

method described. As can be seen, our approach 

can unveil the details and recover vivid color 

information even in very dense haze regions. The 

estimated depth maps are sharp and consistent 

with the input images.  we compare our approach 

with Tan’s work The colors of his result are often 

over saturated, since his algorithm is not 

physically based and may underestimate the 

transmission. Our method recovers the structures 

without sacrificing the fidelity of the colors (e.g., 

swan). The halo artifacts are also significantly 

small in our result. Next, we compare our 

approach with Fattal’s work Our result is 

comparable to Fattal’s result 2. In Figure, we 

show that our approach outperforms Fattal’s in 

situations of dense haze. Fattal’s method is based 

on statistics and requires sufficient color 

information and variance. If the haze is dense, the 

color is faint and the variance is not high enough 

for his method to reliably estimate the 

transmission. Our approach even works for the 

gray-scale images if there are enough shadow 

regions in the image. We omit the operator minc 

and use the gray-scale form of soft matting 

 

VII.Conclusion 
 

we propose the dark channel prior and a single 

image haze removal algorithm. The dark channel 

prior comes from an intuitive observation on 

outdoor haze-free images. Unlike the heuristic 

assumptions in previous methods, this prior is 

based on the image statistics, which is the result of 

inherent physical properties (illumination, colors, 

and geometry). This prior provides a robust 

estimation for each pixel, and thus solves the 

ambiguity of the problem. Despite of itssimplicity, 

our haze removal algorithm based on this prior is 

very effective in various situations. Experiments 

show that our method outperforms most of the 

previous works. In we study fast algorithms for 

haze removal. The challenge is that we need to 

combine the pixel-wise constraints with spatial 

continuities, which is usually time-consuming. In 

the first part of this chapter, we develop an 

algorithm which reduces the time complex of a 

linear solver from O(rN ) to O(N ) with a kernel 

radius r. This discovery is contrary to 

conventional theories, but we prove it true both 

theoretically  This algorithms allows us to 

increase the speed by choosing a larger kernel. In 

the second part of this chapter, we treat the 

problem as a general edge-aware filtering process 

and propose a novel guided filter accordingly. 

This filter voids solving the linear system, and can 

be computed in O(N) time regardless of the kernel 

size.It enables a real-time performance of our haze 

removal algorithm. This filter also exhibits many 

nice properties. Experiments showthat it is 

advantageous in various applications including 

haze removal, in terms of both quality and 

efficiency. we study the relation between the dark 

channel prior and the human visual system (HVS). 

We demonstrate several striking illusion 

experiments to show that the HVS probably 

adopts a similar mechanism like the dark channel 

prior to perceive haze. This study casts new 
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insights into the area of human vision research in 

psychology/phisiology. It also furthersupports the 

validity of the dark channel prior as a computer 

vision algorithm, because we are possibly 

simulating a human visual mechanism. In the 

future, we plan to study the problem under more 

general haze imaging situations, e.g., spatially 

variant atmospheric light or channel-dependent 

transmission. The problem becomes more ill-

posed and new priors are needed. We are also 

interested in applying the fast guided filter in 

more computer vision problems. On the human 

vision study, we expect to build a model to 

quantitatively explain the haze perception  
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