

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 4 Issue 4 April 2015, Page No. 11126-11128

Zeba Mahmood, IJECS Volume 4 Issue 4 April, 2015 Page No.11126-11128 Page 11126

Category, Strategy and Validation of Software Change Impact

Analysis

Zeba Mahmood* Rakesh Bharti Tahera Mahmood
CSE&UIT Allahabad,India

mahmood.zeba@gmail.com

goswami.rakesh@gmail.com

mahmood.tahera@gmail.com

Abstract- Impact analysis is defined as the process of identifying the potential consequences (side-effects) of a change, and

estimating what needs to be modified to accomplish a change. We propose a UML model-based approach to impact analysis that

can be applied before any implementation of the changes, thus allowing an early decision-making and change planning process.

We first verify that the UML diagrams are consistent (consistency check). Then changes between two different versions of a UML

model are identified according to a change taxonomy, and model elements that are directly or indirectly impacted by those

changes (i.e., may undergo changes) are determined using formally defined impact analysis rules (written with Object Constraint

Language). A measure of distance between a changed element and potentially impacted elements is also proposed to prioritize the

results of impact analysis according to their likelihood of occurrence.

Keywords— Software Change Impact Analysis (SCIA), impact analysis, UML diagrams.

INTRODUCTION

Software change occurs for several reasons, for example, in

order to fix faults, to add new features or to restructure the

software to accommodate future changes. Changing

requirements is one of the most important motivations for

software change [1]. Requirements change from the document

design to the testing phase. Changes to requirements reflect

how the system must change in order to be useful for its users

and provide better service from other products available in the

market. At the same time, such changes impose a great risk as

they may cause serious hazard especially in category of

embedded software and related to defense and medical fields

[2]. Thus, changes to requirements must be properly managed

and controlled to ensure the survival of the system from a

technical point of view [3]. An organization that develops

software requires a proper change management process in order

to mitigate the risks of constantly changing requirements and

their impact on the system. Bohner and Arnold [4] define

change impact analysis as the process of identifying the

potential consequences of a change, or estimating what needs

to be modified to accomplish a change. Several authors address

change impact analysis in the context of requirements

modeling. Common techniques used to implement change

impact analysis are based on either traceability or dependency

relationships between the software artifacts. Traceability-based

impact analysis techniques work on analyzing the relationships

between requirements and other development artifacts (such as

design, implementation and test cases) to determine the scope

of the anticipated changes, dependency-based impact analysis

techniques work on a more detailed level by analyzing the

relationships between the artifacts of the same development

phase. Lehnart et al. [5] proposes impact analysis technique’s

classification

A. Code Based Software Change Impact Analysis

Code based approaches investigate the impacts of changes by

reasoning about inheritance relations, method call behavior,

and other dependencies between source code entities. Source

code programs, class packages, classes, methods, statements,

and variables are analyzed to predict the propagation of

changes. However, such techniques are not applicable in the

early stage of software design and requirements analysis, when

no source code is available. Their source code dependent nature

also limits their application to programmers and project

leaders. Static code analysis extracts facts from source code to

build call graphs, slices, and other representations which are

used to assess the impacts of

a change.

B. Model Based Software Change Impact Analysis

Model based analysis provides facility of SCIA for software

models to keep their quality and correctness at early stage.

Models, such as UML diagrams, enable the assessment of

architectural changes on a more abstract level than source code.

This enables SCIA in earlier stages of development and in

MDD, which has become more important in recent years. But

dependent on the underlying modeling language, even model

based analysis provides effective impact analysis results, for

example when analyzing detailed UML class diagrams.

C. Artifacts Based Software Change Impact Analysis

http://www.ijecs.in/

Zeba Mahmood, IJECS Volume 4 Issue 4 April, 2015 Page No.11126-11128 Page 11127

Miscellaneous artifact based SCIA is combined form of

source code and model based techniques including some

other software artifacts. Different researchers have used

different artifacts for impact analysis e.g. some using code

and SRS both and some UML models and source code

both.

 CONTRIBUTING FACTORS FOR

CHANGE REQUEST

Factors that can inflict changes to requirements during both

initial developments as well as in software evolution are

1. The objective of the system is supposed to frequently

change, for example for economic or technological reasons.

2. The users change their requirements about what they want

the system to do, as they understand their needs better

later than the beginning. This can happen because the

users initially were uncertain about what they want.

3. The specifications of the system changes. For example,

increases in processor speed and capacity of computers

can affect the expectations of the system.

4. The new system is developed and released for beta testing

to leading users to discover new requirements.

 STEPS TO VALIDATE CHANGE REQUEST

The support of impact analysis of UML design models can

be decomposed into several sub-problems:

A. Verify the consistency of changed diagrams

The original and modified models must be self-consistent for

any impact analysis algorithm to provide correct results. Note

that this is different from impact analysis as it does not focus

on finding (potentially) impacted elements (i.e., whose

implementation may require change) between two model

versions, but structural inconsistencies between UML diagrams

of a single model, e.g., a class instance (classifier role2) in a

sequence diagram whose class is not in the class diagram.

Since consistency in complex UML models is not always easy

to achieve, verifying consistency must be supported by tools.

Inconsistencies may be automatically modeled and detected by

a set of consistency rules.

B. Automatically detect and classify changes

Automatically detect and classify changes across different

versions of UML models. Ideally, one modifies a UML model

and then uses the impact analysis tool to automatically identify

all the changes performed since the last version. We do not

want software engineers to have to specify each and every

change as we want to avoid the overhead that would prevent

the practice of impact analysis. As seen below, changes have to

be classified to be able to perform a precise impact analysis.

C. Perform an impact analysis

Perform an impact analysis to determine the potential side

effects of changes in the design. In most cases, for reasons

described below, side effects cannot be identified with certainty

as there is no way to ascertain whether a change is really

necessary based on the UML analysis or design only. As a

result, an impacted element is a UML model element whose

properties or implementation may require modification as a

result of changing another model element (i.e., one of its

properties may change). To clarify the terminology we employ,

changes to UML diagrams are the result of logical changes

corresponding to error corrections, design improvements, or

requirement changes. We refer to changes to model elements

when a property of an element has changed from one version of

a diagram to another, e.g., the visibility of an operation. A

logical change usually results in a set of changes to model

elements. Impact analysis can be performed for each logical

change independently or for an entire, new UML model.

D. Prioritize the results of impact analysis

Prioritize the results of impact analysis according to the

likelihood of occurrence of predicted impacted elements. In

object-oriented designs, when considering all direct and

indirect dependencies among model elements, impact analysis

often results in a large number of (potentially) impacted model

elements, thus making their verification impractical.

Addressing this issue requires a way to order side effects

according to criteria that can be easily evaluated and which are

good indicators of the probability of a side effect, for a given

change. .

 STRATEGY FOR IMPACT ANALYSIS

There are various strategies for performing SCIA, these

strategies are based on some parameters which is considered

during their requirements engineering process the execution

phase. These strategies can be broadly classified as following:

1. Automatable

2. Manual

With automatable strategies, means strategies, which are based

on some tools. These strategies have the ability to provide very

fine-grained impact estimation in an automated manner, but

these strategies require detailed infrastructure and related

information of projects [20]. With manual strategies, means

those that are best performed by human beings (not by tools).

These strategies require fewer infrastructures, but may be

harder in their impact estimation than the automatable ones.

CONCLUSION

In this paper we are discuss Software Change Impact analysis

and their category.1) Code based approaches investigate the

impacts of changes by reasoning about inheritance relations,

method call behavior, and other dependencies between source

code entities.2) Model based analysis provides facility of SCIA

for software models to keep their quality and correctness at

early stage . Also discuss Strategy for SCIA that is automated

and manual. And discuss validation of Impact Analysis.

 REFERENCES

[1] R. S. Pressman. Software Engineering: A Practitioner’s Approach.

McGraw-Hill Higher Education, 5th edition, 2001

[2] P. Bengtsson and J. Bosch. Architecture level prediction of software

maintenance. In Software Maintenance and Reengineering, 1999.
Proceedings of the Third European Conference on, pages 139–147. IEEE,

1999.

.
 [3 A. G¨oknil, I. Kurtev, and K. van den Berg. Change impact analysis based

on formalization of trace relations for requirements. 2008.

[4 R. Arnold and S. Bohner. Impact analysis-towards a framework for

comparison. In Software Maintenance ,1993. CSM-93, Proceedings.,

Conference on, pages 292– 301, 1993

Zeba Mahmood, IJECS Volume 4 Issue 4 April, 2015 Page No.11126-11128 Page 11128

[5] S. Lehnert. A taxonomy for software change impact analysis. In
Proceedings of the 12th International Workshop on Principles of Software

Evolution and the 7th annual ERCIM Workshop on Software Evolution,

IWPSE-EVOL ’11, pages 41–50,

New York, NY, USA, 2011. ACM

[6] A. Marcus, A. Sergeyev,V. Rajlich,and J. I. Maletic. An information
retrieval approach to concept location in source code. In Reverse

 Engineering, 2004. Proceedings. 11th Working Conference on, pages

214–223. IEEE, 2004

[7] Y. Li, J. Li, Y. Yang, and M. Li. Requirement-centric traceability for

change impact analysis: A case study. In Q.Wang, D. Pfahl, and
 D. Raffo, editors, Making Globally Distributed Software Development

a Success Story, volume 5007 of Lecture Notes in Compute

 Science, pages 100–111. Springer Berlin Heidelberg, 2008.

