

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 12 December 2014, Page No. 9761-9765

CH. Janakiram, IJECS Volume 3 Issue 12 December, 2014 Page No.9761-9765 Page 9761

An Efficient Technique for Parallel CRC Generation
CH. Janakiram, K.N.H.Srinivas,

P.G.Scholar ,Dept. of Electronics and Communication Engineering,

JNTU KAKINADA, Sri Vasavi Engineering College, Pedatadepalli, Tadepalligudem, West Godavari, A.P.

chjanakiram.ece@gmail.com

Professor, Dept. of Electronics and Communication Engineering,

JNTU KAKINADA, Sri Vasavi Engineering College, Pedatadepalli, Tadepalligudem, West Godavari, A.P.

knh.tridents@gmail.com

Abstract : Cyclic Redundancy Check is playing a vital role in the networking environment to detect the errors. With challenging speed of

transmitting data and to synchronize with speed, it’s necessary to increase speed of CRC generation. This paper presents 64 bits parallel

CRC architecture based on F-matrix with order of generator polynomial is 32. Implemented design is hardware efficient and requires 50%

less cycles to generate CRC with same order of generator polynomial. CRC32 bit is used in Ethernet frame for error detection. The whole

design is functionally developed and verified using Xilinx ISE 12.3i Simulator.

Keywords: Cyclic Redundancy Check(CRC), Parallel CRC calculation, Linear Feedback Shift Register (LFSR), F matrix.

1. Introduction

Cyclic Redundancy Checking is one of the most frequently

used techniques for detecting transmission errors. One of

the CRC techniques utilized in networking is the CRC-32

algorithm employed by Ethernet. Possible solution is to

send more bits in parallely Variants of CRCs are used in

applications like CRC-16 BISYNC protocols, crc32 in

Ethernet frame for error detection. CRC8 bit is used in

ATM[5][8], CRC-CCITT used in X-25 protocol and disc

storage, SDLC, and XMODEM[2]. The Cyclic

Redundancy Check (CRC) is an error detection technique

that is widely utilized in digital data communication and

other fields such as data storage, data compression, and

etc[1][3][6]. There are many CRC algorithms, each of

which has a predetermined generator polynomial G(x) that

is utilized to generate the CRC code. F or example, in

TCP/IP protocol suite[8], the most frequently utilized CRC

algorithm is the CRC-32 algorithm employed by

Ethernet[5], which has the following generator polynomial:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 +

x8 + x7 + x5 + x4 + x2 + x1 + x0

Where m = 32 is the highest order or called the degree of

the generator polynomial and also the length of the CRC

code. We can extract the coefficient of G(x) and represent

it in binary form as: P = p32; p31;:: : p1; p0.

g = [100000100110000010001110110110111];

Which has m + 1 = 33 bits. The most significant bit of P,

P32, corresponds to the coefficient of x32, the highest order

of G(x).

Similarly, p31 corresponds to the coefficient of x31, which

is 0 in this case, and the other bits follow the coefficients at

their corresponding positions. P is called the generator,

and uniquely coincides with the generator polynomial.

CRC calculation can be performed in hardware and

software. The general hardware solution for CRC

calculation is linear feedback shift register (LFSR), in

which simple serial bit architecture is used for encoding

and decoding the message.

When CRC technique is applied, a CRC code is appended

to the end of the data message during transmission. Assume

that the data message is represented by D, which may have

hundreds of bits and the CRC code is denoted by C with

the length m, the degree of the generator polynomial.

Accordingly, the transmitted data unit with CRC code can

be denoted by

T = fDCg = D 2m + C.

The CRC code C is generated so that T is an exact multiple

of generator P. Therefore, if T is transmitted and there is no

error during transmission, the received message T must

also be an exact multiple of the same P. Otherwise, a

transmission error must have occurred.

http://www.ijecs.in/
mailto:chjanakiram.ece@gmail.com
mailto:knh.tridents@gmail.com

CH. Janakiram, IJECS Volume 3 Issue 12 December, 2014 Page No.9761-9765 Page 9762

2. A Serial Implementation of CRC

In hardware implementations, the CRC calculation (modulo

2 divisions)[1] can be easily performed by logical

combinations of shift registers and XOR gates. The Linear

Feedback Shift Register (LFSR)[2] is a common approach

designed to accomplish the serial calculation of CRC in

hardware.

Figure 1 illustrates the basic architecture of LFSR for serial

calculation of CRC. The inputs- outputs in the figure are

shift registers which store the remainder after every

subtraction. The number of shift registers equals m, the

degree of the generator polynomial.

As shown in fig.1 is serial data input, X is present state

(generated CRC), X’ is next state and p is generator

polynomial. Working of basic LFSR architecture is

expressed in terms of following equations.

Figure 1. Basic LFSR Architecture.

Frame Check sequence (FCS) will be generated after (k+m)

cycle, where k indicates number of data bit and m indicates

the order of generator polynomial. For 32 bits serial CRC if

order of generator polynomial is 32 then serial CRC will be

generated after 64 cycles.

3. Parallel CRC

There are different techniques for parallel CRC generation

given as follow.

1. A Table-Based Algorithm for Pipelined CRC

 Calculation.

2. Fast CRC Update.

3. Unfolding, Retiming and pipelining Algorithm.

4. F matrix based parallel CRC generation.

Figure 2 : Pipelined CRC architecture

The pipelined architecture [7] in Fig.2 has five blocks as

input; four of them are used to read four new blocks from

the message in each iteration.

They are converted into CRC using lookup tables: LUT3,

LUT2, and LUT1.LUT3 contain CRC values for the input

followed by 12 bytes of zeros, LUT2 8 bytes, and LUT1 4

bytes. Note that the rightmost block does not need any

lookup table[7]. It is because this architecture assumes

CRC-32, the most popular CRC, and 4-byte blocks. If the

length of a binary string is smaller than the degree of the

CRC generator, its CRC value is the string itself. Since the

rightmost block corresponds to A4, it does not have any

following zero and thus its CRC is the block itself. The

results are combined using XOR, and then it is combined

with the output of LUT4, the CRC of the value from the

previous iteration with 16 bytes of zeros concatenated. In

order to shorten the critical path, we introduce another

stage called the pre-XOR stage right before the four-input

XOR gate. Drawback is Table based architecture required

pre-calculated LUT, so, it will not used for generalized

CRC.

In fast CRC update technique [5] we don’t required to

calculate CRC each time for all the data bits, instead of that

calculating CRC for only those bits that are change.
Drawback is Fast CRC update technique required buffer to

store the old CRC and data.

Figure 3: Fast CRC update architecture.

CH. Janakiram, IJECS Volume 3 Issue 12 December, 2014 Page No.9761-9765 Page 9763

In Unfolding, retiming and pipelining algorithm [2]

Iteration bound is defined as the maximum of all the loop

bounds. Loop bound is defined as t/w, where “T” is the

computation time of the loop and „w‟ is the no. of delay

elements in the loop. The largest iteration bound of a

general serial CRC architecture is also 2TXOR. Drawback is

unfolding architecture increases the no. of iteration bound.

Algorithm and Parallel architecture for CRC generation

based on F matrix. Parallel data input and each element of

F matrix, which is generated from given generator

polynomial is anded, result of that will xoring with present

state of CRC checksum. The final result generated after (k+

m) /w cycle.

4. F-Matrix Parallel CRC Generation

Parallely data is processed; it is ANDed with the F-matrix

generation from the generated polynomial. Result of that

will XORed with present state CRC checksum. The final

result will obtained after (k+m)/w cycles[1]. F-matrix

follows the algorithm as:

Figure 4: Algorithm for F-matrix based architecture

4.1 Generation of F-Matrix

F-matrix generation[1] from the generated polynomial,

matrix form can be represented as:,

Where{p0…pm-1} is generator polynomial. For example,

the generator polynomial for CRC4 is {1, 0, 0, 1, 1} and w-

bits are parallely processed.

Here w=m=4, for that F
4
 matrix calculated as follow

4.2 Parallel Architecture

Parallel architecture based on F- matrix “d” is data that is

parallel processed (i.e. 32bit), 'X is next state, X is current

state (generated CRC), F(i)(j) is the i
th

 row and j
th

 column

of FW matrix. If X = [xm1 …..x1 x0]T is utilized to denote

the state of the shift registers, in linear system theory, the

state equation for LFSRs can be expressed in modular 2

arithmetic as follow.

 Xi´= (P0⊗ Xm-1)⊕d

Where, X(i) represents the i
th

 state of the registers, X(i + 1)

denotes the (i+1)
th

 state of the registers, d denotes the one

bit shift-in serial input. F is an m x m matrix and G is a 1 x

m matrix.

G = [0 0 --------0 1]
T

This can be represented in the matrix form as

Finally it can rewritten as

If W-bits are parallel processed, the result of the CRC will

generated after (k+m)/w cycles.

CH. Janakiram, IJECS Volume 3 Issue 12 December, 2014 Page No.9761-9765 Page 9764

Figure 5 : CRC-32 Parallel calculation for 32bit.

4.3 Implemented Architecture

In Implemented architecture w= 64 bits are parallely

processed and order of generator polynomial is m= 32 as

shown in fig. 5, if 32 bits are processed parallely then

CRC-32 will be generated after (k+m)/w cycles. If we

increase number of bits to be processed parallely, number

of cycles required to calculate CRC can be reduced.

Implemented architecture can be realized by below

equation.

X temp = FW ⊗ D(0to31) ⊕ D(32to63)

 X' = FW ⊗X⊕ X temp

Where

D (0 to 31) =first 32 bits of parallel data input

D (0 to 63) = next 32 bits of parallel data input

X' =next state

X=present state

Figure 6: 64-bit parallel calculation for CRC-32 bit.

In Implemented architecture di is the parallel input and

F(i)(j) is the element of F32 matrix located at ith row and jth

column. As shown in figure 3 input data bits d0….d31 anded

with each row of FW matrix and result will be xored

individually with d32, d33 …….d63. Then each xored result is

then xored with the X' (i) term of CRC32. Finally X will

be the CRC generated after (k +m)/w cycle, where w=64.

5. Result and Analysis

The Implemented architecture is synthesized in Xilinx-12.3

and simulated in Xilinx ISE Simulator, which required half

cycle then the previous 32bit design[2][5]. In our

programming in Verilog module, Generated waveforms for

CRC32 with w=64,w=32 as shown in below figures.

Figure 7: Generated waveform for CRC-32 (w=64, clr=1)

CH. Janakiram, IJECS Volume 3 Issue 12 December, 2014 Page No.9761-9765 Page 9765

Figure 8: Generated waveform for CRC-32 (w=64, clr=0)

The Implemented CRC-32 architecture with 64bit parallel

bit simulated in Xilinx 12.3 ISE simulator. Input data bit to

system is FFFFFFFFFFFFFFFF (64 bit). The final result

obtain after (k+ m)/w cycle for 32-bit residual will be

1B64C2B0 (hexadecimal form).

Figure 9: Generated waveform for CRC-32 (w=32, clr=1)

Figure 10: Generated waveform for CRC-32 (w=32, clr=0)

6. Conclusion

32bit parallel architecture required 17, ((k + m)/w) clock

cycles for 64 byte data [1] [6]. Implemented design (64bit)

required only 9 cycles to generate CRC with same order of

generator polynomial. So, it drastically reduces

computation time to 50% and same time increases the

throughput. Hence, this is compact and easy method for

fast CRC generation.

References

[1] Campobello, G.; Patane, G.; Russo, M.; "Parallel CRC

realization," Computers, IEEE Transactions on , vol.52,

no.10, pp. 1312- 1319, Oct.2003

[2] Albertengo, G.; Sisto, R.; , "Parallel CRC generation,"

Micro,IEEE , vol.10, no.5, pp.63-71,Oct1990

[3] M.D.Shieh et al., “A Systematic Approach for Parallel

CRC Computations,” Journal of Information Science and

Engineering, May 2001.

[4] Braun, F.; Waldvogel, M.; "Fast incremental CRC

updates for IP over ATM networks," High Performance

Switching and Routing,2001 IEEE Workshop on , vol., no.,

pp.48-52, 2001

[5] Weidong Lu and Stephan Wong, “A Fast CRC Update

Implementation”, IEEE Workshop on High Performance

Switching and Routing, pp. 113-120, Oct. 2003.

[6] S.R. Ruckmani, P. Anbalagan, “ High Speed cyclic

Redundancy Check for USB” Reasearch Scholar,

Department of Electrical Engineering, Coimbatore Institute

of Technology, Coimbatore-641014, DSP Journal, Volume

6, Issue 1, September, 2006.

[7] Yan Sun; Min Sik Kim; , "A Pipelined CRC

Calculation Using Lookup Tables," Consumer

Communications and Networking Conference (CCNC),

2010 7th IEEE , vol., no., pp.1-2, 9-12 Jan. 2010

[8] Sprachmann, M.; , "Automatic generation of parallel

CRC circuits," Design & Test of Computers, IEEE , vol.18,

no.3, pp.108-114, May 2001.

Author’s Profile

CH.Janakiram presently pursuing M.Tech.(Digital Electronics

and Communication Systems) in Department of Electronics and

Communications in Sri Vasavi Engineering College (SVEC)

Padatadepalli, Tadepalligudem, A.P., India.

K.N.H.Srinivas, Professor in Department of Electronics and

Communications in Sri Vasavi Engineering College (SVEC)

Padatadepalli, Tadepalligudem, A.P., India

