
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 1 January 2016, Page No. 15463-15466

Dongha Shin1 ,IJECS Volume 05 Issue 1 January 2016 Page No.15463-15466 Page 15463

An Implementation Of IPC Using Direct Thread Switching
Dongha Shin

1
, Sunghoon Son

2
, Eunyoung Kim

3

1
Department of Computer Science, Sangmyung University,20, Hongjimun 2-gil, Jongno-gu, Seoul 03016,

Korea

dshin@smu.ac.kr
3
Department of Computer Science, Sangmyung University,20, Hongjimun 2-gil, Jongno-gu, Seoul 03016,

Korea

shson@smu.ac.kr
2
Department of Computer Science, Sangmyung University,20, Hongjimun 2-gil, Jongno-gu, Seoul 03016,

Korea

201211186@sangmyung.kr

Abstract: Microkernel approach restructures the existing operating system by removing all nonessential

components from the kernel and implementing them as user-level programs. The main function of the

microkernel is to provide a communication facility, such as inter-process communication (IPC), between the

client program and the various services that are also running in user space. Since IPC occurs very often in

microkernel, the performance of IPC highly affects the overall performance of the system. The performance of

IPC decreases tremendously when there are many threads in ready state because many threads need to execute

before IPC receiver thread begins. One of solutions to this problem is direct thread switching, which schedules

the receiver thread immediately after the sender thread send a data. In this paper, we implemented synchronous

IPC for microkernel and adopted direct thread switching to improve IPC performance. Carrying out extensive

performance measurement studies, we showed that direct thread switching enormously improves the

performance of IPC.

Keywords: IPC, microkernel, direct thread switching. ARM architecture

1. Introduction

Microkernel operating system usually implements

basic mechanisms in the kernel and other policies as

service programs. Since service programs have its

own address space, they communicate each other via

inter-process communication (IPC). IPC is a

mechanism that transfers a data between source

thread and destination thread. Since IPC is

performed very frequently in microkernel, IPC

performance is very important [1]. However when

there are many threads of ready state, IPC

performance is decreased because many threads need

to execute before IPC destination thread execute.

Many studies have been proposed to improve the IPC

performance and direct thread switching is known to

be effective in solving this problem. Direct thread

switching can improve IPC performance by

scheduling destination thread immediately after

source thread sends a data to destination thread

[2][4].

In this paper, we implemented synchronous IPC for

microkernel and used direct thread switching to

improve IPC performance. By the results of IPC

performance measurement of uC/OS-II, FreeRTOS

and the kernel implemented in this paper, we

confirmed that IPC performance improves

immensely when using direct thread switching. Also

we analyzed the IPC performance differences when

using direct thread switching.

In section 2, the concepts of IPC and direct thread

switching are introduced. In section 3, the

implementation of IPC is presented. We describe the

results of performance evaluation of IPC. Finally,

section 5 concludes the paper.

2. Preliminaries

In this section, we explain basic concept of

synchronous IPC and direct thread switching. We

also explain how to use ARM performance monitor

[5] which is necessary to measure IPC execution

cycle.

http://www.ijecs.in/

DOI: 10.18535/Ijecs/v5i1.11

Dongha Shin1 ,IJECS Volume 05 Issue 1 January 2016 Page No.15463-15466 Page 15464

2.1 Synchronous IPC

For synchronous (rendezvous-style) IPC, a sender

thread must wait until message delivery is completed.

Once a receiver thread receives IPC message, the

state of the sender thread becomes ready [3].

Synchronous IPC is a prerequisite for a number of

IPC performance enhancement techniques such as

temporary mapping, lazy scheduling, and direct

thread switching [4]. Various L4 microkernels also

support synchronous IPC as basic communication

mechanism. Recent versions of L4 also provide

asynchronous notification as well to provide a rich

programming environment.

2.2 Direct thread switching

Generally when the current thread is ceased to run,

the kernel calls thread scheduler to select the next

thread to run and switches to the thread. During an

IPC call, the scheduler is invoked to select the next

thread to run among threads in the ready queue. If

there are too many threads in the ready queue before

the receiver thread is selected, the message delivery is

delayed. One of the solutions to this problem is direct

thread switching [2][4]. If a thread gets blocked

during an IPC call, the kernel switches to a

readily-identifiable runnable thread, which then

executes on the original thread’s time slice, usually

ignoring priorities. Since there is no intervention of

other threads between sender thread and receiver

thread, direct thread switching improves IPC

performance immensely.

However, the fact that direct thread switching

ignores thread’s priority sometimes causes some

problems. Modern L4 versions, concerned about

correct real-time behavior, retain direct thread switch

where it conforms to priorities, and else invoke the

thread scheduler [4].

2.3 ARM performance monitor

ARMv7 provides system performance monitor

functionality using Coprocessor15 (cp15) [5].

Performance monitor consists of a cycle counter and

at most 31 event counter registers. Of these 32

registers, we use PMCR, PMCNTENSET,

PMOVSR, PMCCNTR, PMUSERENR, and

PMIMTENCLR. In order to measure processor

execution cycles for a given time interval, we first

read the PMCCNTR register right before the time

interval and also read the register immediately after

the interval. Then, the difference of two PMCCNTR

values is the processor execution cycles of the

interval.

3. Implementation

In this section, we explain various fields of TCB

related to IPC implementation. We also explain IPC

send and receive system calls and the implementation

of direct thread switching.

3.1 Thread control block (TCB)

TCB has many IPC-related fields such as tid, state,

message, and rbtid/sbtid/rrwtid.

3.1.1 tid

tid field contains thread’s id. It is used to identify

sender thread and receiver thread during an IPC call.

3.1.2 state

The field contains the thread’s state. It may have one

of the values, READY, RUNNING, or WAITING.

3.1.3 message

This field stores message during an IPC call. The

message is stored at message field of receiver

thread’s TCB.

3.1.4 rbtid, sbtid, and rwtid

There are many fields which contain the copies of tid.

rbtid stores the thread id of sender thread while

receiver thread is blocked during IPC receive call.

sbtid stores the thread id of receiver thread while

sender thread is blocked during IPC send call. rwtid is

used to store the thread id of sender thread while

receiver thread is blocked during IPC send call to

other thread.

3.2 System calls

In this study, we implement IPC send and receive

system calls.

3.2.1 send system call

The current thread uses send system call to send a

message to another thread. If there exists a receiver

thread that is waiting for the message, the kernel

moves the receiver thread into ready queue and

delivers the message to the receiver thread. If there

exists no such thread, the system call requests

message send and makes the current thread become

blocked.

3.2.2 receive system call

The current thread uses receive system call in order to

receive a message from other thread. If there already

DOI: 10.18535/Ijecs/v5i1.11

Dongha Shin1 ,IJECS Volume 05 Issue 1 January 2016 Page No.15463-15466 Page 15465

is a sender thread, the kernel reads the message at the

sender’s TCB and makes the sender thread ready. If

there exists no such thread, the system call requests

message reception and makes the current thread

blocked.

3.3 Direct thread switching

In this study, direct thread switching is implemented

in receive system call. While the original receive

system call returns immediately after inserting the

receiver thread into ready queue, the receiver thread

executes immediately after it is inserted into ready

queue. The receiver thread executes during the

remaining time slice of the current thread, while the

current thread is inserted into ready queue.

4. Measurement and Analysis

In this section, we measure the performance of direct

thread switching. For comparison, we present the IPC

performance of other embedded operating system

such as uC/OS-II and FreeRTOS.

4.1 IPC performance

In order to understand the effect of direct thread

switching, we measures the IPC performance of four

different systems: uC/OS-II[6][7], FreeRTOS [8][9],

in-house microkernel (ARM-Kernel) and in-house

microkernel with direct thread switch

(ARM-Kernel-DTS). All the measurements were

conducted on Cortex-A8 based BeagleBone board.

Performance measurement program utilized ARM

performance monitor registers [5] to count CPU

execution cycle during an IPC call.

Table 1: IPC performance in each system

Thread

types

uC/OS-

II

FreeRT

OS

ARM-

kernel

ARM-

kernel-

DTS

Busy

wait
- 260x10

6

297x1

0
6

1392

Busy

wait &

Sleep

92x10
6
 116x10

6

120x1

0
6

1015

Sleep 650 2500 333 299

 in cycles

Table 1 shows the IPC performance in each system.

The measurement is done between the point before

the system call IPC send in a sender thread and the

point after the system call IPC receive in a receiver

thread. The lower value means better performance.

Each row of Table 1 represents the type of other

threads running together with a sender and a receiver

thread. The thread type ‘Busy wait’ means all other

threads are executing a busy wait loop, the thread

type ‘Sleep’ means all other threads are executing a

sleep loop and the thread type ‘Busy wait & Sleep’

means other threads are executing either a busy wait

loop or a sleep loop.

As shown in Table 1, the thread type ‘Busy wait’

has the biggest clock cycle in each system, since this

case makes most other threads ready in the ready

queue and the receiver thread need to wait long after

the sender thread execute the system call IPC send.

The thread type ‘Sleep’ has the smallest clock cycle

in each system, since this case makes a few other

threads ready in the ready queue and the receiver

thread wait short in the ready queue after the sender

thread execute the system call IPC send. We can see

that ARM-kernel-DTS that uses IPC with direct

thread switching shows best performance in all thread

types.

4.2 Analysis on the effects of direct thread

switching

Table 2 compares the IPC performance of

ARM-kernel-DTS with ARM-kernel in order to

verify the effect of direct thread switching.

Table 2: Analysis on the effects of direct thread

switching

No. of threads ARM-kernel
ARM-kernel-

DTS

0 456 378

30 170 x 10
6
 843

60 340 x 10
6
 1025

90 510 x 10
6
 1104

120 680 x 10
6
 1146

150 805 x 10
6
 1128

180 1020 x 10
6
 1153

200 1133 x 10
6
 1186

 in cycles

In Table 2, Number of threads means the number of

threads other than sender thread or receiver thread.

As shown by Table 2, when direct thread switching is

not enabled, the IPC performance degrades as the

number of threads increase. This is because the

receiver thread begins to run only after other threads

in the ready queue are scheduled first. However,

using direct thread switching, the number of threads

cannot affect the IPC performance. On the other

DOI: 10.18535/Ijecs/v5i1.11

Dongha Shin1 ,IJECS Volume 05 Issue 1 January 2016 Page No.15463-15466 Page 15466

hand, by direct thread switching, the length of ready

queue does not affect the execution of receiver thread

since the receiver thread execute as soon as it enters

the ready queue.

5. Conclusions

In this paper, we developed synchronous IPC for

in-house microkernel. We also implements direct

switching mechanism for IPC performance

enhancement. Experimental study reveals that direct

thread switching improves the performance of IPC

immensely. Also we analyze the IPC performance

differences using direct thread switching.

Acknowledgements

This work was supported by Institute for Information

& communications Technology Promotion (IITP)

grant funded by the Korea government (MSIP) (No.

B0101-15-0644). This paper is a revised version of a

conference paper (in Korean) presented in the

Proceedings of Fall Conference of Institute of

Embedded Engineering of Korea, Jeju, South Korea,

in November 14, 2015.

References

[1] Jochen Liedtke, Toward Real Microkernels,

Communications of the ACM 39(9), 1997.

[2] Jochen Liedtke, Improving IPC by kernel design,

In Proceedings of the 14th ACM Symposium on

Operating System Principles, 1993.

[3] Trent Jaeger, Jonathon E. Tidswell and Alain

Gefflaut, Synchronous IPC over Transparent

Monitors, Proceedings of the 9th Workshop on

ACM SIGOPS European Workshop: Beyond the

PC: New Challenges for the Operating System,

2000.

[4] Kevin Elphinstone and Gernot Heiser, From L3

to seL4: What Have We Learnt in 20 Years of L4

Microkernels?, In Proceedings of the 24th ACM

Symposium on Operating Systems Principles,

2013.

[5] ARM Limited, ARM Architecture Reference

Manual, ARM DDI 0406C.c, Chapter C12 The

Performance Monitors Extension, 2014.

[6] J. Labrosse, MicroC/OS-II: The Real-Time

Kernel, 2
nd

 Ed., CMP Books, 2002.

[7] MicroC/OS-II, http://www.micrium.com, 2015.

[8] Real Time Engineers Ltd., FreeRTOS Reference

Manual – API Functions and Configuration

Options, 2014.

[9] FreeRTOS, http://www.freertos.org, 2015.

Author Profile

Dongha Shin received the B.S. degree in Computer

Engineering from Kyungpook National University in

1980, the M.S. degree in Computer Engineering from

Seoul National University in 1982 and the Ph.D.

degree in Computer Science from University of

South Carolina in 1994. During 1982-1996, he stayed

in ETRI as a technical staff to study expert systems,

word processing systems, file systems and language

processing systems. During 1997-current, he is a

professor of Computer Science Department in

Sangmyung University.

Sunghoon Son received the B.S., M.S. and Ph.D.

degree in Computer Science from Seoul National

University in 1981, 1983 and 1999 respectively.

During 1999-2004, he stayed in ETRI as a technical

staff to study operating systems, embedded systems

and multimedia systems. During 2004-current, he is

an associate professor of Computer Science

Department in Sangmyung University.

Eunyoung Kim is currently an undergraduate

student in Computer Science from Sangmyung

University. Her research interest includes real-time

kernels and embedded systems.

