
 

www.ijecs.in 

International Journal Of Engineering And Computer Science ISSN:2319-7242 

Volume 3 Issue 12 December 2014, Page No. 9717-9720 

 

 

S.Manikandan, IJECS Volume 3 Issue 12 December, 2014 Page No.9717-9720  Page 9717 

Detecting and Preventing Distributed Denial of Service (DDOS) 

Attacks Using BOTNET Monitoring System 

S.Manikandan 
1
, K. Manikanda Kumaran 

2
, S.Palanimurugan 

3
, S.Aravindan

 4
 and S.Praveen Kumar 

5
 

 

1,2,3 Assistant Professor, Dept. of IT,  

EGSPEC, Nagapattinam, Tamilnadu, India. 

e-mailID: profmaninvp@gmail.com 

 
4,5 Assistant Professor, Dept. of CSE,  

EGSPEC, Nagapattinam, Tamilnadu, India. 

e-mailID: kkl.aravind@gmail.com 

 

 

 
Abstract - Denial-of-Service (DoS) attacks pose a significant threat to the Internet today especially if they are distributed, i.e., launched 

simultaneously at a large number of systems. Reactive techniques that try to detect such an attack and throttle down malicious traffic 

prevail today but usually require an additional infrastructure to be really effective. In this paper we show that preventive mechanisms can 

be as effective with much less effort: We present an approach to (distributed) DoS attack prevention that is based on the observation that 

coordinated automated activity by many hosts needs a mechanism to remotely control them. To prevent such attacks, it is therefore possible 

to identify, infiltrate and analyze this remote control mechanism and to stop it in an automated fashion. We show that this method can be 

realized in the Internet by describing how we infiltrated and tracked distributed denial of service attacks using hybrid peer to peer botnets 

monitoring system. 

 

Index: Botnet, DDOS, Honeypot, IDS and Mimic Flash Crowds 

 
1. Introduction 

 

Today’s Internet connected networks are under permanent 

attack by intruders and automated attacks of worms. A variety 

of detection tools exist such as Intrusion Detection systems 

(IDS) and firewalls, but the main problem is that they only 

react on reconfigured and therefore known attacks. Botnets are 

an upcoming technology that can be used to detect and 

analyze network attacks. A Botnet is an apparently vulnerable 

system deployed to be hacked. An analysis of current Botnet 

approaches has been made and it has been evaluated in how 

far these approaches can contribute to the analyzation process. 

Some tests have shown that Botnets are exposed to lots of 

known attacks and noise that hide the valuable information 

about new attacks and vulnerabilities [1].     

 

In this paper we present the design of an advanced hybrid 

peer-to-peer botnet. The focus of this is to analyze how far 

Botnet technology can be used to detect new, unknown attacks 

and this gathers information about the hackers that can be used 

to improve the security of our network. Botnets help to 

develop a reasoned, proactive response to a threat. Bot IDS 

can protect important files and directories on our hard disk no 

matter what file-system type they reside on, anybody include 

root can not change the files. Botnet IDS can also protect the 

important process from being killed.  

 

1.1 Surviving Organized DDOS Attacks that Mimic Flash 

Crowds 

Recent denial of service attacks are mounted by 

professionals using Botnets of tens of thousands of 

compromised machines. To circumvent detection, attackers 

are increasingly moving away from bandwidth floods to 

attacks that mimic the Web browsing behavior of a large 

number of clients, and target expensive higher-layer resources 

such as CPU, database and disk bandwidth. The resulting 

attacks are hard to defend against using standard techniques, 

as the malicious requests differ from the legitimate ones in 

intent but not in content. We present the design and 

implementation of Kill-Bots, a kernel extension to protect 

Web servers against DDoS attacks that masquerade as flash 

crowds. Kill-Bots provides authentication using graphical tests 

but is different from other systems that use graphical tests [2]. 

http://www.ijecs.in/


S.Manikandan, IJECS Volume 3 Issue 12 December, 2014 Page No.9717-9720 Page 9718 

First, Kill-Bots uses an intermediate stage to identify the 

IP addresses that ignore the test, and persistently bombard the 

server with requests despite repeated failures at solving the 

tests. These machines are bots because their intent is to 

congest the server. Once these machines are identified, Kill-

Bots blocks their requests, turns the graphical tests off, and 

allows access to legitimate users who are unable or unwilling 

to solve graphical tests. Second, Kill-Bots sends a test and 

checks the client’s answer without allowing unauthenticated 

clients access to sockets, TCBs, and worker processes. Thus, it 

protects the authentication mechanism from being DDoSed. 

Third, Kill- Bots combines authentication with admission 

control. As a result, it improves performance, regardless of 

whether the server overload is caused by DDoS or a true Flash 

Crowd. 

1.3 Paper Organization 

 

The rest of the paper is organized as follows. Section 2 

introduces system analysis and specifies the algorithms. 

Section 3 introduces the control communication architecture 

of the proposed botnet and botmasters. Section 4 describes 

data encryption/decryption standard and algorithm. Finally, 

conclude the paper in Section 5. 

  

2. System Analysis 

 

Traditionally, information security has been purely 

defensive. Firewalls, Intrusion Detection Systems, encryption; 

all of these mechanisms are used defensively to protect one's 

resources. A variety of detection tools exist such as Intrusion 

Detection systems (IDS) and firewalls, but the main problem 

is that they only react on reconfigured and therefore known 

attacks. In an existing system that will produce only the 

simulation result. BOTMASTER does not know the hackers 

IP address. This system can only run on single system. The 

primary purpose of a Honey net is to gather information about 

threats that exist [3]. 

 

A Honey net is a type of honey pot. Specifically, it is 

a high-interaction honey pot designed to capture extensive 

information on threats. High-interaction means a Honey net 

provides real systems, applications, and services for attackers 

to interact with. It is through this extensive interaction we gain 

information on threats, both external and internal to an 

organization. Proposed system can note the IP address of 

Hackers and can identify what type of file they want to access 

and what password and key was given by hackers to access the 

file. This system can produce the real time result. We can run 

it on more than one system without changing, and can run in 

single system too. 

 

2.1 An algorithm for anomaly-based botnet detection 

 

We present an anomaly-based algorithm for detecting 

IRC-based botnet meshes. The algorithm combines an IRC 

mesh detection component with a TCP scan detection heuristic 

called the TCP work weight. The IRC component produces 

two tuples, one for determining the IRC mesh based on IP 

channel names, and a sub-tuple which collects statistics 

(including the TCP work weight) on individual IRC hosts in 

channels. We sort the channels by the number of scanners 

producing a sorted list of potential botnets. This algorithm has 

been deployed in PSU’s DMZ for over a year and has proven 

effective in reducing the number of botnet clients [4]. 

Data Control 

 

Data Control is the containment of activity. It is what 

mitigates risk. By risk, we mean there is always the potential 

of an attacker using a Botnet to attack or harm non-Botnet 

systems. We want to make every effort possible to ensure that 

once an attacker is within our Botnet, they cannot accidentally 

or purposefully harm other non-Botnet systems. This is more 

challenging then it seems. First, we have to allow the attackers 

some degree of freedom to act. The more activity we allow the 

attackers to perform, the more we can potentially learn about 

them. However, the more freedom you allow an attacker, the 

more risk there is they will circumvent Data Control and harm 

other non-Botnet systems.  

Data Capture 

 

Data Capture is the monitoring and logging of all of the 

black hat’s activities within the Botnet. It is this captured data 

that is then analyzed to learn the tools, tactics, and motives of 

members of the black hat community. The challenge is to 

capture as much data as possible, without the blackhat 

detecting the process. As with Data Control, one of the 

primary lessons learned for Data Capture has been the use of 

layers. It is critical to use multiple mechanisms for capturing 

activity. Not only does the combination of layers help piece 

together all of the attacker's actions, but it prevents having a 

single point of failure.  

 

Data Collection 

Data Collection is a third requirement, but this only 

applies to organizations that have multiple Botnets in 

distributed environments. Many organizations will have only 

one single Botnet, so all they need to do is both Control and 

Capture data. However, organizations that have multiple 

Botnets logically or physically distributed around the world, 

such as the Botnet Research Alliance have to collect all of the 

captured data and store it in a central location.  

3. Botnet Monitoring by its Botmaster 

Another major challenge in botnet design is making sure 

that a botnet is difficult to monitor by defenders, but at the 

same time, easily monitored by its botmaster. With detailed 

botnet information, a botmaster could (1). Conduct attacks 

more effectively according to the bot population, distribution, 

on/off status, IP address types, etc; (2). Keep tighter control 

over the botnet when facing various counterattacks from 

defenders [fig 1]. In this section, we present a simple but 

effective way for botmasters to monitor their botnets 

whenever they want, and at the same time, resist being 

monitored by others. 

 



S.Manikandan, IJECS Volume 3 Issue 12 December, 2014 Page No.9717-9720 Page 9719 

 

Fig 1. Command and control architecture of the proposed 

hybrid P2P botnet 

 

3.1 Botmaster Implementation  

1. Use a popular Internet service, such as HTTP or 

Email, for report to a sensor. The sensor is chosen such 

that it normally provides such a service to avoid 

exhibiting abnormal network traffic. 

2. Use several sensor machines instead of a single 

sensor.  

3. Select sensor hosts that are harder to be shut down or 

monitored, for example, compromised machines in 

other countries with minimum Internet security and 

International collaboration. Manually verify the 

selected sensor machines are not honeypots. 

4. Wipe out the hard drive on a sensor host 

immediately after retrieving the report data.  

5. Specify expiration time in report command to 

prevent any bot exposing itself after that time. 

6. Issue another command to the botnet to cancel the 

previous report command once the botmaster knows 

that the sensor host has been captured by defenders. 

 

To make sure that a constructed botnet is connected, the 

initial set of bots should contain some servent bots whose IP 

addresses are in the peer list in every initial bot. Suppose the 

size of peer list in each bot is configured to be M. As a bot 

program propagates, the peer list in each bot is constructed 

according to the following procedure (fig 1): 

 

New infection: Bot A passes its peer list to a vulnerable host 

B when compromising it. if A is a servent bot, B adds A into 

its peer list (by randomly replacing one entry if its peer list is 

full). If A knows that B is a servent bot (A may not be aware 

of B’s identity, for example, when B is compromised by an 

email virus sent from A), A adds B into its peer list in the 

same way. 

Reinfection: If reinfection is possible and bot A reinfects bot 

B, bot B will then replace R (R ≤ M−1) randomlyselected bots 

in its peer list with R bots from the peer list provided by A. 

Again, bot A and B will add each other into their respective 

peer lists if the other one is a servent bot as explained in the 

above “new infection” procedure. 

Peer-list updating: After a botnet spreads out for a while, a 

botmaster issues a report command to obtain the information 

of all currently available servent bots. These servent bots are 

called peer-list updating servent bots. Then, the botmaster 

issues another command, called update command, enabling all 

bots to obtain an updated peer list from a specified sensor 

host. The sensor host randomly chooses M servent bots to 

compose an updated peer list, then sends it back to each 

requested bot. 

 

4. Data Encryption / Decryption 

The Blow fish involves replacing each letter of the 

alphabet with the letter standing k places further down the 

alphabet. 

Encryption:  

Blowfish is a Feistel network consisting of 16 rounds. The 

input is a 64-bit data element, x [Table 1].  

Decryption  

It is exactly the same as encryption, except that P1, P2,..., 

P18 are used in the reverse order. This algorithm used to 

encrypt the all the data before going to send to the user. Using 

the private key k it is decrypted on the end user side. The user 

who knows the private key can only decrypt the data. 

Divide x into two 32-bit halves: xL, xR 

For i = 1 to 16: 

xL = xL XOR Pi 

xR = F(xL) XOR xR 

Swap xL and xR 

Swap xL and xR (Undo the last swap) 

xR = xR XOR P17 

xL = xL XOR P18 

Recombine xL and xR 

Function F (see Figure 2): 

Divide xL into four eight-bit quarters: a, b, c, and d 

F(xL) = ((S1,a + S2,b mod 2
32

) XOR S3,c) + S4,d mod 2
32 

 

Thus the botnet robustness metric C(p) is: 

C(p) = 1, < R bots are removed 

            0, ≥ R bots are removed 

 

The botnet will be shut down if all R C&C server bots are 

removed, which makes it much less robust than the proposed 

P2P botnet. 

Table 1. Encryption and Decryption algorithm. 

4.2 Logs and Alert System 

This provide alert message to the administrator. If hacker 

entered into the network then the firewall detecting that hacker 

and immediately it tell to the honey pot about the hacker. 

Suddenly the Honey Pot monitoring the hacker activities. 

Before that it gives the alert message to the log/alert server 

where the administrator is sited. Then the administrator can 

watch the hacker’s motivation and activities. 

4.3 Botnet Monitoring Based on Spying Honeypots 



S.Manikandan, IJECS Volume 3 Issue 12 December, 2014 Page No.9717-9720 Page 9720 

If a botnet cannot effectively detect honeypots, defenders 

could let their honeypots join botnets and monitor botnet 

activities. Based on honeypot bots, defenders may be able to 

obtain the plain text of commands issued by a botmaster. Once 

the meaning of the commands is understood, defenders are 

able to: (1). Quickly find the sensor machines used by a 

botmaster in report commands. If a sensor machine can be 

captured by defenders before the collected information on it is 

erased by its botmaster, they might be able to obtain detailed 

information of the entire botnet; (2). Know the target in an 

attack command so that they could implement corresponding 

countermeasures quickly right the actual attack begins. 

 
The proposed hybrid P2P botnet represents only a 

specific P2P botnet design. In reality, botmasters may come up 

with some other types of P2P botnet designs. However, we 

believe this research is still meaningful to security community. 

The proposed design is practical and can be implemented by 

botmasters with little engineering complexities. Botmasters 

will come with a similar design sooner or later, and we must 

be well prepared for such an attack, or a similar attack, before 

it happens. 

 

5. Conclusion 

 

Due to their potential for illicit financial gain, 

“botnets” have become popular among Internet attackers in 

recent years. As security defenders build more honeypot-based 

detection and defense systems, attackers will find ways to 

avoid honeypot traps in their botnets. Attackers can use 

software or hardware specific codes to detect the honeypot 

virtual environment, but they can also rely on a more general 

principle to detect botnet: security professionals using botnet 

have liability constraints such that their botnet cannot be 

configured in a way that would allow them to send out real 

malicious attacks or too many malicious attacks. In this paper, 

we introduced various means by which attackers could detect 

botnet in their constructed botnets based on this principle. 

Botnet research and deployment still has significant value for 

the security community, but we hope this paper will remind 

honeypot researchers of the importance of studying ways to 

build covert botnet and the limitation in deploying botnet in 

security defense.  

 

The current popular research focused on finding 

effective honeypot-based detection and defense approaches 

will be for naught if botnet remain as easily detectible as they 

are presently. The P2P botnet is much harder for security 

professionals to track. There is no centralized bot controller 

they can monitor. A honeypot bot in the botnet can only 

monitor a very small portion of the entire botnet. The attacker 

still has control over the remaining P2P botnet, even if the 

remaining botnet is broken into many separated smaller ones. 

Attackers also do not need to spend money buying Dynamic 

DNS services. Therefore, we believe more P2P botnets will be 

created in the future. 

 

6. References 

 

[1] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-

sale: Surviving organized ddos attacks that mimic flash 

crowds,” in 2nd Symposium on Networked Systems Design 

and Implementation (NSDI), May 2005. 

[2] C. T. News, “Expert: Botnets No. 1 emerging Internet 

threat,” 2006, 

http://www.cnn.com/2006/TECH/internet/01/31/furst/. 

[3] F. Freiling, T. Holz, and G. Wicherski, “Botnet tracking: 

Exploring a root-cause methodology to prevent distributed 

denial-of-service attacks,” CS Dept. of RWTH Aachen 

University, Tech. Rep. AIB-2005-07, April 2005. 

[4] D. Dagon, C. Zou, and W. Lee, “Modeling botnet 

propagation using time zones,” in Proceedings of 13th Annual 

Network and Distributed System Security Symposium 

(NDSS), Feburary 2006, pp. 235–249. 

[5] A. Ramachandran, N. Feamster, and D. Dagon, “Revealing 

botnet membership using dnsbl counter-intelligence,” in 

USENIX 2nd Workshop on Steps to Reducing Unwanted 

Traffic on the Internet (SRUTI 06), June 2006. 

[6] E. Cooke, F. Jahanian, and D. McPherson, “The zombie 

roundup: Understanding, detecting, and disrupting botnets,” in 

Proceedings of SRUTI: Steps to Reducing Unwanted Traffic 

on the Internet, July 2005. 

[7] J. R. Binkley and S. Singh, “An algorithm for anomaly-

based botnet detection,” in USENIX 2nd Workshop on Steps 

to Reducing Unwanted Traffic on the Internet (SRUTI 06), 

June 2006. 

[8] I. Arce and E. Levy, “An analysis of the slapper worm,” 

IEEE Security & Privacy Magazine, Jan.-Feb. 2003. 

 

Authors Profile 

S. Manikandan received the B.Tech, degree in 

Information Technology with Distinction from the 

EGS Pillay Engineering College, Nagapattinam, 

Anna University, Chennai, India, in 2010 and 

received M.E. Computer Science and Engineering 

with University first and Honors in Annamalai 

University, Annamalai Nagar India, in 2012. Currently he is working 

Assistant Professor in EGS Pillay Engineering College, 

Nagapattinam, India. His research interest includes Colud 

Computing, Soft computing, Networking, Network Security and 

Pervasive Computing.  

 


