

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 7 (July 2013), Page No. 2235-2257

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2235

DESIGN AND CONSTRUCTION OF DOOR

LOCKING SECURITY SYSTEM USING GSM
Ushie James Ogri, Donatus Enang Bassey Okwong, Akaiso Etim

Department of Physics, University of Calabar,

ushjames@yahoo.com

ABSTRACT
This project presents a prototype security door that can be remotely controlled by a GSM phone set acting

as the transmitter and another GSM phone set with a dual tone multi-frequency (DTMF) connected to

the door motor through a DTMF decoder interfaced with microcontroller unit and a stepper motor .The

design is composed of four main functional modules, namely; the GSM module, the decoding module,

controlling module and the switching module. The GSM module act as both transmitting and receiving

unit employs the use of a mobile phone set serving as the communication device between the user at one

end and the object of access (i.e. the door) at the other receiving end. The decoding module and the

controlling module are made possible using modern integrated circuit chips ensuring proper conversion

of signal to binary codes, enabling the microcontroller to communicate properly with the switching device

responsible for opening and closing the door. The codes for this project was written in assembly language

with Visual basic software and compiled with M-IDE studio for MC-51compiler which work perfectly

with Window XP environment, the program run without error before it was burn onto the microcontroller

using a device called the programmer by placing the microcontroller on it socket equal to the pin number.

Keywords: Door Locking, Security, GSM, Microcontroller and Stepper Motor

INTRODUCTION: Security describes protection of life and property. There are doors to keep people out,

Key locks and chains reinforce the mode of security. Doors are being made of metals not just wood

anymore. Influential persons in our society have bullet proof doors to ensure a good measure of security of

self and family. The security sector is experiencing diversification as it has never seen before. This has

brought about the need to review the reliability of already existing systems and look into the possibility of

creating better systems that are smarter and more secure.

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2236

The micro controller based digital lock presented here is an access control system that allows only

authorized persons to access a restricted area, this system is best suitable for corporate offices, automated

machine (ATMs) and home security. It comprises of a small electronic unit which is in fixed at the entry

door to control a solenoid-operated lock with the help of a stepper motor, when an authorized person enters

predetermined user password via the global system for mobile communication (GSM) keypad, the stepper

motor is operated for a limited time to unlatch the solenoid-operated lock so the door can be open. At the

end of preset delay time, the stepper motor is operated in reverse direction and the door gets locked again.

When the code has been incorrectly entered three times in a row, the code lock will switch to block mode,

this function thwarts any attempt by „hackers‟ to quickly try a large number of codes in a sequence. If the

user forgets his password, the code lock can be accessed by a unique 8 digit administrator password and the

secret code can be changed any time after entering the current code (Master code).

The project intends to interface the microcontroller with the GSM modem and start/stop the engine by

sending the predefined messages from the mobile phone to the controlling unit, The software application and

the hardware implementation help the microcontroller read the messages sent by the user from a mobile

phone or send messages to the mobile phone through the modem and accordingly change the status of the

engine motor required. The measure of efficiency is based on how fast the microcontroller can detect the

incoming message and act accordingly.

The system is totally designed using GSM and embedded systems technology. The Controlling unit has an

application program to allow the microcontroller read the incoming data through the modem and control the

engine motor as per the requirement. The performance of the design is maintained by the controlling unit.

This project uses 8051 microcontroller as the central processing unit. Specifically the proto-type make used

of AT89s52 microcontroller with Programs written in assembly language burnt inside the microcontroller to

perform the following capabilities;

Assembly language is used to write the interfacing program and compiled with M-IDE studio for MC-

51compiler which work perfectly with Window XP environment and may have compatibility problems with

higher versions of the Window operating system

In residential applications: solid wood door, panel doors, metal skinned wood-edged doors and metal edge-

wrapped doors (www.wikipedia.org, 2008). In addition to doors are; deadbolts, frame reinforcements, door

chains and hinge screws – long 3” screws (www.statefarm.com, 2012) but despite these reinforcements

door, security by itself is very porous. An electronics or electric lock is a locking device which operates by

means of electric current (Gibson Stan, 2001). One of such locks is magnetic locked (mag locked).

A large electro-magnet is mounted on the door frame and a corresponding armature is held fast to the

magnet (Mckenice, 1995). mag locks by design fail unlocked, that is if power is removed they unlock.

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2237

SYSTEM DESIGN: The design of a door locking security system using GSM is a complex design which

comprises of so many modules (parts) brought together to form the overall design. Each of these modules is

made up of discrete components that are joined together to achieve a particular purpose. These separate

modules are: The Power Supply Unit, The Buzzer Unit, The micro controller Unit, Telephone unit and

Switching.

These different units cannot function alone, they all need to function together to achieve the desired result.

The GSM modem received tone from the GSM network as shown by the direction of the arrow in the

diagram below and transmit same to the DTMF decoder but the current value was very small (i.e. about

0.1mA) it was step-up by the tone transformer so that it could be decode by the DTMF decoder which then

send the decoded codes to the microcontroller for processing and outputting to relevant component to act

accordingly.

The block diagram of the design showing all the units combined together are shown in the figure below.

BUZZE

R

MICROCONTROLLE

R

8051
(AT89S52)

 RELAYS DTMF
DECODER
(MT8870)

 GSM
MODERM

 POWER
SUPPLY UNIT

 RELAY
DRIVER
ULN 2003

 LCD

 DOOR
MOTOR

Fig. 3.2 Block Diagram of GSM Enable Door Lock.

Fig: 3.3 Circuit Diagram for the Design

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2238

SOFTWARE PROGRAMS FOR THE MICROCONTROLLER: Microcontroller is a programmable

device (Mazidi, 1997). It is an intelligent core for a specialised dedicated system (Sanchez & Canton, 2007).

The firmware part deals with programming the microcontroller so that it can control the operation of the

IC‟s used in the hardware implementation. In the research, M-IDE studio for MC-51 software development

tool is used to compile the source code, which was written in assembly language. The Universal programmer

was used to burn the compile source code onto the microcontroller.

Software development involves a series of steps which are necessary for the development of reliable and

maintainable software.

SYSTEM FLOW CHART: A flow chart showing in detail the working of thee device is shown below.

From this flow chart, we can see how the different unit come together to achieve the desired purpose.

Fig 3.10: System Flow Chart

WRITING OF THE PROJECT SOURCE CODE: This is codes that machine understand which enable

all the component units in the circuit to communicate with each other. the codes for this project was written

NO

NO

YES

 Stop

Start

Is password

correct?

Is N ≥ 3

error count

Establish link with

receiver phone

Enter access codes

Grant access

8sec delay

Close Door

Activate Alarm

YES

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2239

in assembly language with Visual basic software and compiled with M-IDE studio for MC-51compiler

which work perfectly with Window XP environment, the program run without error before it was burn onto

the microcontroller using a device called the programmer by placing the microcontroller on it socket equal

to the pin number of the microcontroller. The source code is at appendix.

RESULTS AND DISCUSSION: The prototype door security system developed in this project did well in

achieving its original goals. In the beginning the system will boot up with display on the LCD screen

prompting the user to enter pin code.

The password door lock system has a default password of “198526”, 196310 and the user is given only 3

attempts to enter the correct password. If not, the keypad will switch to block mode requesting for PUK

number which is “38893982” eight numbers. At the same time an alarm will sound until the PUK number is

imputed with correct PIN. The development of this technology for the field of security system is not only

possible, but it could even prove to be very useful.

SUMMARY AND WORKING PROCEDURE OF THE PROJECT: The operation of this project is

summarized as follow;

i. A call is placed to the phone that is connected to the system, this call is like any normal call to a

friend, colleague etc. the call made is set to be automatically answered at the other (i.e. door) end, the

caller immediately presses six digits numbers (password).

ii. The signal qualities of the tones are first increased by passing it into a step up transformer, the output

of which goes to the DTMF decoder.

iii. In the DTMF decoder the tones are received and decoded into a binary code equivalent, the output of

the decoder is sent to the microcontroller.

iv. The microcontroller‟s internal programming processes the output from the DTMF decoder. Here,

these decoded signals are identified as the keys pressed on the phone keypad. the microcontroller

output these information into three unit;

 Liquid crystal display unit, to show the user the digit pressed.

 The ULN2003 driver. this converts the logic level from the microcontroller‟s TTL to the signal

that control the switching sequence of the relay

 The Buzzer alarm. This sound to alert the user when a digit is pressed and also sound

continuously when wrong numbers are entered by intruder.

 On entry of the six digit code the “#” button of the keypad is pressed as confirmation of the code.

If the code entered is correct, (if the user mistakenly typed wrong digit, this can be delete by

pressing “0” key to backspace) data is sent to the microcontroller to activate door opening

sequence; this sequence includes the display of an “Access Granted” text on the LCD screen and

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2240

the output of a signal to the transistor driving the relay. This signal causes the relay contacts to

switch and completes the motor circuit thereby causing the door to open.

 The door closes automatically after precisely 8 seconds, but user can close the door by pressing

the “#” key on the keypad. The microcontroller is programmed to recognized this character and

bring about the switching action of another relay which closes the door.

Table 4.1 Component Description and Prices

COMPONENT

DESCRIPTION

UNIT

PRICE

(N)

QUANTITY TOTAL

PRICE

(N)

MICRO-

CONTROLLER(AT89S52)

 1200 1 1200

TONE TRANSFORMER

240/12v

500 1 500

16X2 LCD SCREEN 2000 1 2000

DTMF DECODER 3000 1 3000

3.75445MHZ CRYSTAL

OSCILLATOR

100 2 200

30pF CAPACITOR 50 4 200

10µF,16v CAPACITOR 100 1 100

12v/500mA TRANSFORMER 500 1 500

BRIDGE RECTIFY 300 2 600

1000µf,25v CAPACITOR 200 2 200

LM7805 REGULATOR 150 1 150

10K POTENTIOMETER 100 1 100

RESISTOR 20 5 100

12V/500mA TRANSFORMER 500 1 500

VERIO BAORD 200 1 200

SOLDERING IRON 300 1 300

SOLDERING LEAD 500 1 500

150pF CAPACITOR 100 1 100

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2241

I.C SOCKET 50 3 150

GSM MODEM 7000 1 7000

12V/10A RELAY 200 2 400

ULN2003 RELAY DRIVER 300 1 300

DOOR FABRICATION AND

SERVO MOTOR

 7000 1 7000

PROGRAMMING LOGISTICS 15000 - 15000

TRANSPORTATION AND

MISCELENOUS

10000 - 10000

15v/2000mA TRANSFORMER 500 2 1000

EAR PIECE,13A PLUG &

CONNECTORS

1400 1 1400

GRAND TOTAL - - 52,000

CONCLUSION

The work was successful. It is evidence that the use of mobile phones with the right circuitry can be used to

operate a security system, since the mobile phone in today‟s world; it is an access device a lot easier and

affordable to obtain as opposed to specially fabricated keys and smart-cards. The ability of the system to

accesses a secure place (Home, office, ATM etc.) remotely almost anywhere in the world is a plus since

technology has made the world a global village.

 REFRENCES

AT89s52 datasheet, www.atmel.com, (13 December, 2012).

Bill Bowden, “controlling Relay with logic signals” http//ourworld.compuserve.com, (10 September, 2008).

Crystal Oscillator, http://en.wikipedia.org (10
th

 September 2011).

Door Hinges and security, http://www.statefarm.com/learningbsafeathmburghing.asp (20
th

 February, 2008).

Electric locks, http://en.wikipedia.org/wiki/door security, (10
th

 November, 2012).

Gibson Stan (2001) “the illustrated Dictionary of electronics”, McGraw-Hill Publication, USA.

Horowitz, Paul; Winfield, H. (1995) “The Art of Electronics”, Cambridge University Press, London.

Mckenice Smith Ian, Hughes (1995) “Electrical technology” 7
th

 edition, Longman group ltd New York.

MT8070D1 datasheet, www.mitel.com (11
th

 November, 2011).

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2242

Muhammad Ali Mazidi, Janice Gillispie, Mazidi Rolin and D. McKinlayn (1997) “The 8051 Microcontroller

and Embedded Systems Using Assembly and C” 2
nd

 Edition, Dept. of Computer Science and

Information Engineering, National Cheng Kung University, TAIWAN.

Sanchez Julio and Canton Maria (2007), “Microcontroller programming- the micro chip PIC”, CRC Press

USA.

APPENDIX A:

 PROJECT SOURCE CODE

org 00h ; reset vector address

Data_Ram_0 data 30

Data_Ram_1 data Data_Ram_0 + 1

Data_Ram_2 data Data_Ram_1 + 1

Data_Ram_3 data Data_Ram_2 + 1

Data_Ram_4 data Data_Ram_3 + 1

Data_Ram_5 data Data_Ram_4 + 1

Data_Ram_6 data Data_Ram_5 + 1

Data_Ram_7 data Data_Ram_6 + 1

Data_Ram_8 data Data_Ram_7 + 1

Data_Ram_9 data Data_Ram_8 + 1

 receive_bit equ P1.0

 DTMF_receive_bitQA equ P1.4

 DTMF_receive_bitQB equ P1.3

 DTMF_receive_bitQC equ P1.2

 DTMF_receive_bitQD equ P1.1

data_bank data 20

rs bit p2.7

rw bit p2.6

en bit p2.5

sdata data p3

 ADC_Data data p1

 ADC_clock bit p0.4

 relaya bit p2.0

 relayb bit p2.1

 buzzer bit p0.2

 bank data 49

clr relaya

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2243

clr relayb

clr buzzer

mov r0 , #Data_Ram_9

 hat1: mov @r0 , #' '

 dec r0

 cjne r0 , #Data_Ram_0 -1 , hat1

clr relaya

clr relayb

clr buzzer

mov r7 , #0

setb rw

 clr en

 setb en

 lcall clear_lcd

 lcall init_lcd

 lcall clear_lcd

 clr rs

 mov sdata,#80h+00h

 setb en

 clr en

 lcall wait_lcd

 mov Dptr,#message1

Repeat_Data_processingxx : call wait

 loop212: clr a

 movc a , @a+Dptr

 inc Dptr

 cjne a,#'@' , jaj212

 clr rs

 MOV SDATA,#80H+40H

 SETB EN

 CLR EN

 LCALL WAIT_LCD

 jmp Repeat_Data_processingxx

 jaj213w: call write_text

 jmp Repeat_Data_processingxx

 jaj212 :cjne a,#'#' , jaj213w

 call wait

 call wait

 call wait

 call wait

 setb rw

 clr en

 setb en

 lcall clear_lcd

 lcall init_lcd

 lcall clear_lcd

 clr rs

 mov sdata,#80h+00h

 setb en

 clr en

 lcall wait_lcd

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2244

 mov Dptr,#message2

Repeat_Data_processingxx11 : call wait

 loop2121: clr a

 movc a , @a+Dptr

 inc Dptr

 jaj213: cjne a,#'@' , jaj21211n

 clr rs

 MOV SDATA,#80H+40H

 SETB EN

 CLR EN

 LCALL WAIT_LCD

 jmp Repeat_Data_processingxx11

 jaj21211n:cjne a,#'#' , jaj213z

 call wait

 call wait

 call wait

 call wait

 setb rw

 clr en

 setb en

 lcall clear_lcd

 lcall init_lcd

 lcall clear_lcd

 clr rs

 mov sdata,#80h+00h

 setb en

 clr en

 lcall wait_lcd

 mov Dptr,#message3

 jmp james

 jaj213z : call write_text

 jmp Repeat_Data_processingxx11

 james : call wait

 loop2121c: clr a

 movc a , @a+Dptr

 inc Dptr

 cjne a,#'#' , jaj21211nc

 CALL prompting

 sjmp start_validation

 jaj21211nc: call write_text

 sjmp james

 start_validation :

 jnb receive_bit , $

 setb buzzer

call DTMF_DECODER_READER2

call wait

clr buzzer

 jb receive_bit , $

 jmp start_validation

 wait_lcd:

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2245

 clr en ; rt lcd command

 clr rs ;it's a command

 setb rw ;it's a read command

 mov sdata,#0ffh ;set all pins to ff initially

 setb en ;clock out command to lcd

 mov a,sdata ;read the return value

 jb acc.7,wait_lcd ;if bit 7 high, lcd still busy

 clr en ;finish the command

 clr rw ;turn off rw for future commands

 ret

init_lcd:

 clr rs

 mov sdata,#38h

 setb en

 clr en

 lcall wait_lcd

 clr rs

 mov sdata,#0eh

 setb en

 clr en

 lcall wait_lcd

 clr rs

 mov sdata,#06h

 setb en

 clr en

 lcall wait_lcd

 ret

clear_lcd:

 clr rs

 mov sdata,#01h

 setb en

 clr en

 lcall wait_lcd

 ret

write_text:

 setb rs

 mov sdata,a

 setb en

 clr en

 lcall wait_lcd

 ret

waitx:

TT0c: MOV R3,#8

 MOV R2,#8

 MOV R1,#236

TT1c: DJNZ R1,TT1c

 DJNZ R2,TT1c

 DJNZ R3,TT1c

 RET

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2246

ret

DTMF_DECODER_READER2:

 ;scanning for button one 1==0001

 jnb DTMF_receive_bitQA ,ExitSubB0

 jb DTMF_receive_bitQB ,ExitSubB0

 jb DTMF_receive_bitQC ,ExitSubB0

 jb DTMF_receive_bitQD ,ExitSubB0

mov a , #'*'

 call write_text

mov data_bank, #'1'

CALL SHIFT_DATA

 ret

 ExitSubB0:;scanning for button two 2==0010

 jb DTMF_receive_bitQA ,ExitSubBB

 jnb DTMF_receive_bitQB ,ExitSubBB

 jb DTMF_receive_bitQC ,ExitSubBB

 jb DTMF_receive_bitQD ,ExitSubBB

 mov a , #'*'

 call write_text

mov data_bank, #'2'

CALL SHIFT_DATA

 ;call play2

 ret

 ;;;;;;;;;;;;;;;;;;;

 ExitSubBB:;scanning for button THREE 3==0011

 jNb DTMF_receive_bitQA ,ExitSubBC

 jNb DTMF_receive_bitQB ,ExitSubBC

 jb DTMF_receive_bitQC ,ExitSubBC

 jb DTMF_receive_bitQD ,ExitSubBC

 mov a , #'*'

 call write_text

mov data_bank, #'3'

CALL SHIFT_DATA

 ret

 ExitSubBC:

 ;;;;;;;;;;;;;;;;

 ;scanning for button four 4==0100

 jb DTMF_receive_bitQA ,ExitSu

 jb DTMF_receive_bitQB ,ExitSu

 jnb DTMF_receive_bitQC ,ExitSu

 jb DTMF_receive_bitQD ,ExitSu

 mov a , #'*'

 call write_text

mov data_bank , #'4'

CALL SHIFT_DATA

 ret

 ;;;

 ExitSu:;scanning for button five 5==0101

 jNb DTMF_receive_bitQA ,ExitSu1

 jb DTMF_receive_bitQB ,ExitSu1

 jnb DTMF_receive_bitQC ,ExitSu1

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2247

 jb DTMF_receive_bitQD ,ExitSu1

 mov a , #'*'

 call write_text

mov data_bank, #'5'

CALL SHIFT_DATA

 ret

 ;;;;%%%%%%%%%%%%%%%%%%%%%%%%

 ExitSu1:;scanning for button six 6==0110

 jb DTMF_receive_bitQA ,Exit

 jNb DTMF_receive_bitQB ,Exit

 jnb DTMF_receive_bitQC ,Exit

 jb DTMF_receive_bitQD ,Exit

 mov a , #'*'

 call write_text

mov data_bank, #'6'

CALL SHIFT_DATA

 ret

 Exit:;scanning for button7==0111

 jNb DTMF_receive_bitQA ,Exit1

 jNb DTMF_receive_bitQB ,Exit1

 jNb DTMF_receive_bitQC ,Exit1

 jb DTMF_receive_bitQD ,Exit1

 mov a , #'*'

 call write_text

mov data_bank, #'7'

CALL SHIFT_DATA

 ret

 Exit1:;scanning for button8==1000

 jb DTMF_receive_bitQA ,ExitX

 jb DTMF_receive_bitQB ,ExitX

 jb DTMF_receive_bitQC ,ExitX

 jNb DTMF_receive_bitQD ,ExitX

 mov a , #'*'

 call write_text

mov data_bank, #'8'

CALL SHIFT_DATA

 ret

 ExitX:;scanning for button9==1001

 jNb DTMF_receive_bitQA ,ExitA1

 jb DTMF_receive_bitQB ,ExitA1

 jb DTMF_receive_bitQC ,ExitA1

 jNb DTMF_receive_bitQD ,ExitA1

 mov a , #'*'

 call write_text

mov data_bank, #'9'

CALL SHIFT_DATA

 ret

 ExitA1:;scanning for button*==1011

 jNb DTMF_receive_bitQA ,ExitXX1

 jNb DTMF_receive_bitQB ,ExitXX1

 jb DTMF_receive_bitQC ,ExitXX1

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2248

 jNb DTMF_receive_bitQD ,ExitXX1

 call delete_data_process

 ret

 ;;;&&&&&&&&&&&&&&&&&&&

 ExitXX1:;scanning for button0==1010

 jb DTMF_receive_bitQA ,ExitXXX1

 jNb DTMF_receive_bitQB ,ExitXXX1

 jb DTMF_receive_bitQC ,ExitXXX1

 jNb DTMF_receive_bitQD ,ExitXXX1

 call delete_data_process

 ret

 ExitXXX1:;scanning for button#==1100

 jb DTMF_receive_bitQA ,ExitXXXX1_error

 jb DTMF_receive_bitQB ,ExitXXXX1_error

 jNb DTMF_receive_bitQC ,ExitXXXX1_error

 jNb DTMF_receive_bitQD ,ExitXXXX1_error

 call verify

 ret

ExitXXXX1_error : ret

 SHIFT_DATA:

 mov Data_Ram_9 ,Data_Ram_8

 mov Data_Ram_8 ,Data_Ram_7

 mov Data_Ram_7 ,Data_Ram_6

 mov Data_Ram_6 ,Data_Ram_5

 mov Data_Ram_5 ,Data_Ram_4

 mov Data_Ram_4 ,Data_Ram_3

mov Data_Ram_3 ,Data_Ram_2

 mov Data_Ram_2,Data_Ram_1

mov Data_Ram_1 ,Data_Ram_0

 mov Data_Ram_0 ,data_bank

 ret

 verify:

 mov r0 ,#Data_Ram_9

 ;password_1 : db '198526#'

;password_2 : db '196310#'

cjne @r0 ,#' ' , next

 mov a , @r0

 dec r0

cjne @r0 ,#' ' , next

 mov a , @r0

 dec r0

cjne @r0 ,#' ' , next

 mov a , @r0

 dec r0

cjne @r0 ,#' ' , next

 mov a , @r0

 dec r0

cjne @r0 ,#'2' , next

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2249

 mov a , @r0

 dec r0

 cjne @r0 ,#'9' , next

 mov a , @r0

 dec r0

 cjne @r0 ,#'6' , next

 mov a , @r0

 dec r0

cjne @r0 ,#'3' , next

mov a , @r0

 call write_text

 dec r0

 cjne @r0 ,#'2' , next

 mov a , @r0

 call write_text

 dec r0

cjne @r0 ,#'6' , next

mov a , @r0

 call write_text

 dec r0

 call open

 ret

 ;password_1 : db '198526#'

next: mov r0 ,#Data_Ram_9

cjne @r0 ,#' ' , next1

 mov a , @r0

 call write_text

 dec r0

cjne @r0 ,#' ' , next1

 mov a , @r0

 call write_text

 dec r0

cjne @r0 ,#' ' , next1

 mov a , @r0

 call write_text

 dec r0

cjne @r0 ,#' ' , next1

 mov a , @r0

 call write_text

 dec r0

 cjne @r0 ,#'2' , next1

 dec r0

 cjne @r0 ,#'9' , next1

 dec r0

 cjne @r0 ,#'8' , next1

 dec r0

cjne @r0 ,#'5' , next1

 dec r0

 cjne @r0 ,#'2' , next1

 dec r0

cjne @r0 ,#'6' , next1

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2250

 dec r0

 call open

 ret

next1: inc r7

 cjne r7 , #3 , MAM1

 jmp sat

 mam1: jmp mam

sat:

 CALL PUK

 mov r7 , #0

 mov DPTR , #unlock

 call ogba

 Repeat_Data_processingxx41 :

 loop2124: clr a

 movc a , @a+Dptr

 inc Dptr

 cjne a,#'@' , jaj2124

 clr rs

 MOV SDATA,#80H+40H

 SETB EN

 CLR EN

 LCALL WAIT_LCD

 jmp Repeat_Data_processingxx41

 jaj213w4: call write_text

 jmp Repeat_Data_processingxx41

 jaj2124 :cjne a,#'#' , jaj213w4

 mov r0 ,#Data_Ram_0

 nextg : mov @r0 , #' '

 inc r0

 cjne r0 ,#Data_Ram_9 + 1 , nextg

 gagg:

 jnb receive_bit , $

 ExitXXX1a:;scanning for button#==1100

 jb DTMF_receive_bitQA ,ExitXXXX1_errora

 jb DTMF_receive_bitQB ,ExitXXXX1_errora

 jNb DTMF_receive_bitQC ,ExitXXXX1_errora

 jNb DTMF_receive_bitQD ,ExitXXXX1_errora

 ; 34493941

 mov r0 ,#Data_Ram_9

 cjne @r0 ,#' ' , nextl2

 dec r0

 cjne @r0 ,#' ' , nextl2

 dec r0

 cjne @r0 ,#'3' , nextl2

 dec r0

 cjne @r0 ,#'8' , nextl2

 dec r0

 cjne @r0 ,#'8' , nextl2

 dec r0

cjne @r0 ,#'9' , nextl2

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2251

 dec r0

 cjne @r0 ,#'3' , nextl2

 dec r0

 cjne @r0 ,#'9' , nextl2

 dec r0

 cjne @r0 ,#'8' , nextl2

 dec r0

 cjne @r0 ,#'2' , nextl2

 dec r0

 clr buzzer

 mov r0 ,#Data_Ram_0

 nextgz: mov @r0 , #' '

 inc r0

 cjne r0 ,#Data_Ram_9 + 1 , nextgz

call prompting

 ret

 nextl2:mov r0 ,#Data_Ram_9

 nextgd : mov @r0 , #' '

 dec r0

 cjne r0 ,#Data_Ram_0 - 1 , nextgd

 ExitXXXX1_errora :

 call DTMF_DECODER_READER2

 jb receive_bit , $

 jmp gagg

MAM: call errorr

mov r0 , #Data_Ram_9

 nextgdc: mov @r0 , #' '

 dec r0

 cjne r0 ,#Data_Ram_0 - 1 , nextgdc

call wait

call wait

call wait

RET

OPEN:

setb rw

 clr en

 setb en

 lcall clear_lcd

 lcall init_lcd

 lcall clear_lcd

 clr rs

 mov sdata,#80h+00h

 setb en

 clr en

 lcall wait_lcd

 mov r0 , #Data_Ram_9

 nextgdca: mov @r0 , #' '

 dec r0

 cjne r0 ,#Data_Ram_0 - 1 , nextgdca

clr buzzer

MOV DPTR , #access

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2252

AGAIN:

Repeat_Data_processingxxn:

 loop212J: clr a

 movc a , @a+Dptr

 inc Dptr

 cjne a,#'@' , jaj212J

 clr rs

 MOV SDATA,#80H+40H

 SETB EN

 CLR EN

 LCALL WAIT_LCD

 jmp again

 jaj213e:call write_text

 jmp Repeat_Data_processingxxn

 jaj212j :cjne a,#'#' , jaj213e

 SETB relaya

clr relayb

 call waitx

 call waitx

 call waitx

 call waitx

 call waitx

 call waitx

 clr relayb

 clr relaya

 call waitx

 call waitx

 call waitx

 call waitx

 setb rw

SETB relayb

clr relaya

 call waitx

 call waitx

 call waitx

 call waitx

 call waitx

 call waitx

 call waitx

 call waitx

 clr relayb

 clr relaya

 call waitx

 call waitx

 SETB relayb

clr relaya

 call waitx

 call waitx

 clr relayb

 clr relaya

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2253

 call waitx

SETB relayb

clr relaya

 call waitx

 call waitx

 clr relayb

 clr relaya

 call waitx

 call prompting

 ret

 errorr:

setb rw

 clr en

 setb en

 lcall clear_lcd

 lcall init_lcd

 lcall clear_lcd

 clr rs

 mov sdata,#80h+00h

 setb en

 clr en

 lcall wait_lcd

MOV DPTR , #error

AGAINv:

Repeat_Data_processingxxv:

 loop212Jv: clr a

 movc a , @a+Dptr

 inc Dptr

 cjne a,#'@' , jaj212Jv

 clr rs

 MOV SDATA,#80H+40H

 SETB EN

 CLR EN

 LCALL WAIT_LCD

 jmp againv

 jaj213ek:call write_text

 jmp Repeat_Data_processingxxv

 jaj212jv :cjne a,#'#' , jaj213ek

 call prompting

 ret

 puk:

setb rw

 clr en

 setb en

 lcall clear_lcd

 lcall init_lcd

 lcall clear_lcd

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2254

 clr rs

 mov sdata,#80h+00h

 setb en

 clr en

 lcall wait_lcd

MOV DPTR , #prompt_PUK

AGAINv1:

Repeat_Data_processingxxv1:

 loop212Jv1: clr a

 movc a , @a+Dptr

 inc Dptr

 cjne a,#'@' , jaj212Jv1

 clr rs

 MOV SDATA,#80H+40H

 SETB EN

 CLR EN

 LCALL WAIT_LCD

 jmp againv1

 jaj213ek1:call write_text

 jmp Repeat_Data_processingxxv1

 jaj212jv1 :cjne a,#'#' , jaj213ek1

 ret

 verify2:

 mov DPTR ,#password_1 ; loading pointer data

 mov r0 ,#Data_Ram_0

Quit_verification1 :

 loop212q: clr a

 movc a , @a+Dptr

 inc Dptr

cjne @r0 ,#12, Quit_verification1

 inc r0

 inc r7

 cjne r7, #7 , Quit_verification1

 mov r7, #00000000b ; reset counter

 Quit_verification: mov DPTR ,#password_2 ; loading pointer data

 mov r0 ,#Data_Ram_0

Repeat_Data_processingxxd :

Quit_verification1d :

 loop212qd: clr a

 movc a , @a+Dptr

 inc Dptr

 cjne @r0,#78, Quit_verificationda

 inc r0

 inc r7

 cjne r7, #7 , Quit_verification1d

 mov r7 , #00000000b ; reset counter

 Quit_verificationda: inc r6

 cjne r6 , #3 , error_counter

 mov r6, #00000000b ; reset counter

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2255

 error_counter:

 ret

 delete_data_process:

 mov r0 , #Data_Ram_0

 CONTINUE_LOADING : mov @r0 , #' '

 inc r0

 cjne r0 , #Data_Ram_9 + 1 , CONTINUE_LOADING

 CALL prompting

 ret

 prompting:

 setb rw

 clr en

 setb en

 lcall clear_lcd

 lcall init_lcd

 lcall clear_lcd

 clr rs

 mov sdata,#80h+00h

 setb en

 clr en

 lcall wait_lcd

 mov Dptr,#prompt

Repeat_Data_processingxx22 :

 loop21222: clr a

 movc a , @a+Dptr

 inc Dptr

 cjne a,#'@' , jaj21222f

 clr rs

 MOV SDATA,#80H+40H

 SETB EN

 CLR EN

 LCALL WAIT_LCD

 jmp Repeat_Data_processingxx22

 jaj213zz:

 call write_text

 jmp Repeat_Data_processingxx22

 jaj21222f :cjne a,#'#' , jaj213zz

 mov a , #'['

 call write_text

 MOV SDATA,#80H+4fH

 SETB EN

 CLR EN

 LCALL WAIT_LCD

mov a , #']'

 call write_text

 MOV SDATA,#80H+49H

 SETB EN

 CLR EN

 LCALL WAIT_LCD

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2256

ret

 ret

wait:;

TT0112: MOV R3,#3

 MOV R2,#208

 MOV R1,#41

TT1112: DJNZ R1,TT1112

 DJNZ R2,TT1112

 DJNZ R3,TT1112

 RET

 ogba:

 call wait

 call wait

 call wait

 call wait

 setb rw

 clr en

 setb en

 lcall clear_lcd

 lcall init_lcd

 lcall clear_lcd

 clr rs

 mov sdata,#80h+00h

 setb en

 clr en

 lcall wait_lcd

 ret

 message1: db 'GSM enabled DOOR@ lock#'

 message2: db ' Designed BY @OKWONG , AKAISO#'

 message3: db 'Mat NO:06/45094#'

password_1 : db '198526#'

password_2 : db '196310#'

access: db ' Access Granted@ Door Open#'

error: db ' Access Denied@ Invalid code#'

prompt: db 'Security Door@Pin code#'

prompt_PUK: db 'Enter PUK pin#'

unlock: db '**Unlock system*@***************#'

PUK_number: db '38893981#'

end

APPENDIX B:

PROJECT GALLERY

Ushie James Ogri, IJECS Volume 2 Issue 7, (July 2013) Page No.2235-2257 Page 2257

Exterior view of controlling unit Interior view of the controlling unit

Side view of the whole system Front view of the whole system

 Door sliding to show the motor with circuitry Sliding door in closed position

