

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 12 December 2014, Page No. 9543-9546

Ramya.Y IJECS Volume 3 Issue 12 December, 2014 Page No.9543-9546 Page 9543

Creating a Knowledge Base by extracting Top-K lists from the web

Ramya.Y, K.Ramana Reddy
M.Tech Student,CSE

Aurora’s Technological & Research Institute

Hyderabad,Telangana,India

Assistant Professor,CSE Department

Aurora’s Technological & Research Institute

Hyderabad,Telangana,India

ramya07chitti@gmail.com

Abstract: The World Wide Web is currently the largest source of information. However, most information

on the web is unstructured text in natural languages, and extracting knowledge from natural language text is

very difficult. Still, some information on the web exists as lists or web tables coded with specific tags such

as , , and <table> on html pages. However, it is questionable how much valuable knowledge we can

extract from lists and web tables. It is true that the total number of web tables is huge in the entire corpus,

but only a very small percentage of them contain useful information. Nowadays we have So many Search

engines. These search engines provide top-k lists as search results. The search results contains huge amount

of information in which the user is not interested to visit all the pages except the top 2 or 3.Moreover the

search results may also contain unwanted data. Hence to avoid this drawback we will be developing a better

method for mining top-k lists. In proposed system we use Path Clustering Algorithm which better processes

the top-k web page. The system displays only required top lists related to our top-k title. It is very useful to

the user which saves user’s time. The extracted lists can also be used as background knowledge for Q/A

system. We present an efficient method that extracts top-k lists from web pages with high performance. This

system collects top-k lists of various interests which can be called a knowledge base and provides a search

option to mine them.
Keywords: Web information extraction, top-k lists, list

extraction, web mining.

I. INTRODUCTION

In World Wide Web much of the information

contains structured data such as tables and lists

which are very valuable for knowledge discovering

and data mining. This structured details because it is

relatively easier to unlock information from data

with some regular patterns than free text which

makes up most of the web content. However, when

encoded in HTML, structured data becomes semi-

structured. And because HTML is designed for

rendering in a browser, different HTML code

segments can give the same visual effect at least to

the human eye. As a result, HTML coding is much

less stringent than XML, and inconsistencies and

errors are abundant in HTML documents. All these

pose significant challenges in the extraction of

structured data from the web [1]. In this demo, we

focus on list data in web pages. In particular, we are

interested in extracting from a kind of web pages

which present a list of k instances of a topic or a

concept. Examples of such topic include “20 Most

Influential Scientists Alive Today”, “Ten Hollywood

Classics You Shouldn’t Miss”, “50 Tallest Persons

in the World”. Informally, our problem is: given a

web page with a title that contains a integer number

k, check whether the page contains a list of k items

as its main content, and if it does, extract these k

items. We call such lists top-k lists and pages that

contain the entirety of a top-k list top-k pages[2].

There are also lists that span multiple pages but are

connected by hyperlinked “Next” button, but these

are not considered in this work. A typical scenario

we consider, like the one in Figure1, is that each list

item is more than an instance of the topic in the title,

but instead contains additional information such as a

textual description and images. Our objective is to

extract the actual instance whenever possible, but in

the worst case, produce list items that at least

contain the wanted instances.

http://www.ijecs.in/
mailto:ramya07chitti@gmail.com

Ramya.Y IJECS Volume 3 Issue 12 December, 2014 Page No.9543-9546 Page 9544

Fig 1.Sample Top-K web page

The main approach of this work goes along the line

of analyzing similar tag paths in the DOM tree with

the help of visual features to identify the main list in

a page. The key contributions of this demo are:

 We defined a novel top-k list extract problem

which is useful in knowledge discovery and

fact answering;

 We designed an unsupervised general-purpose

algorithm along with a number of key

optimizations that is capable of extracting

top-k lists from any web pages.

Fig 2.Sample extracted list

II.PROBLEM DEFINITION

 Let a web page be a pair (t, d) where tis the page

title, and d is the HTML body of the page.

 A page (t, d) is a top-k page if:

1) From title t we can extract “Top” and “k” .

2) Where k is a natural number.

3) From the page body d we can extract k and only k

items.

.

 The top-k extraction problem can then be defined

as three sub-problems (in terms of three functions):

 Title recognition F1 : (t, d)→(k, “top”)

 List extractor F2 : (k) → I Where I is the set

of terms which are instances of c and |I| = k

 Content extractor F3 : (c, d, I) →(T, S)

Where T is a table of attribute values for the

elements in I and S is its schema.

III OUR APPROACH

Algorithm: TAG PATH CLUSTERING

ALGORITHM.

. Our basic algorithm runs in four

steps[3][4]. First, we compute the tag path for every

node in the DOM tree of the input page. An HTML

Document Object Model (DOM) is a tree structure

whose nodes are HTML elements identifiable by

HTML tags and associated attributes. Second, we

group nodes with an identical tag path into one

equivalence class [5], from which we extract exactly

k members as our candidate list. A tag path is a path

from the root to an arbitrary node in the DOM tree.

A top-k list item or list item in short, is a segment of

HTML page which represents a unique item in the

top-k list of a top-k page. A list item can contain

multiple item components such as a title (which is

often the name of an entity), some descriptive text or

an image. Now the item components that belong to

the same list item are grouped together. Finally the

candidate list is projected as a top-k list. If there

doesn’t exist any candidate list, then this input page

is not a top-k page.

The basic algorithm solves most but not all

top-k list extraction problems. To improve the result

quality and the performance, we further introduce

four optimization heuristics [6].

1) Visual Area: In the basic algorithm, the

relative importance of a candidate list to the whole

page is calculated as number of text characters in the

list against the total number of text characters. This

doesn’t work when the list contains large non-text

areas such as white space or images, or the list uses

large fonts. As an enhancement, we try to estimate

the total visual area of the candidate list versus the

total area of the page. This can done by the

calculating the combination of image sizes, font

sizes and potential white spaces.

2) Interleaving Lists: For aesthetic reasons, a

top-k list may have an “interleaving pattern”, where

list items have alternate visual styles such as

background colors or fonts. In the basic algorithm,

this kind of list may be treated as two lists of size

k=2 and removed mistakenly. We include a special

heuristic to detect such interleaving patterns and

reconstruct the whole list from two smaller

candidate lists.

3) k + 1 Problem: Some top-k pages have a

top-k list with an additional header or footer that

looks almost exactly the same and has the same tag

path as the real list items. The basic algorithm

cannot distinguish between the real items and this

“fake” item. There is a similar k+1 problem where

the first or the last item of the real top-k list has a

slightly different style and is excluded from the

Ramya.Y IJECS Volume 3 Issue 12 December, 2014 Page No.9543-9546 Page 9545

equivalence class. We pay special attention to

equivalence classes of size k + 1 and k -1 and try to

identify these boundary cases by comparing the sub

tree of the items or analyzing the text content.

4) Item Title Extraction. From our

observation of many top-k pages from different

domain, we generalized a number of rules for

identifying the title entities in a top- k list. For

example, titles are often placed before other item

components, and often occupy a single line in the

rendered display with stylized fonts.

IV .IMPLEMENTATION DETAILS

As the input of the system, the web page is

first parsed by a HTML parser [3] to obtain a

complete DOM representation. Then the title

classifier attempts to recognize the page title. If it is

a “top-k like” title, the classifier outputs the list size

(the number k) and a set of possible concepts

mentioned in the title. With the number k, the

candidate picker extracts all lists of size k from the

page body as candidate lists [6]. Only one of them

will be the actual list of interest. With the concept

set, the top-k ranker can score each candidate list

and pick the best one as the “top-k” list. Finally the

content processor analyzes the list content and

extracts the entity names and attributes.

1 Title Classifier

The title of a web page (string enclosed in

<title> tag) helps us identify a “top-k” page. The

goal of the classifier is to recognize “top-k like”

titles[7], the likely name of a “top-k” page. In

general, a “top-k like” title represents the topic of

“top k” list. Note that a “top-k like” title may contain

multiple segments, and usually only one segment

describes the topic or concept of the list.

Fig

3.Top-K Title

2) Candidate Picker

 Given an HTML page body and the number k, the

candidate picker collects a set of lists as candidates.

Each list item is a text node in the page body. We

define a tag path of a node as a path from the root to

this node in the DOM tree. Items in a “top-k” list

usually have similar format and style, and therefore

they share an identical tag path. Our Default

algorithm takes advantage of this observation to

identify lists of size k. Note that there might be

multiple lists of the same size from a given page.

3) Content Processor

 The content processor takes as input a “top-k” list

and extracts the main entities as well as their

attributes. Sometimes the text within an HTML text

node contains a structure itself, e.g. “Hamlet By

William Shakespeare”. The content processor infers

the structure of the text by building a histogram for

all potential separator tokens such as “By”, “:” and

“,” from all the items of the “top-k” list. If we

identify a sharp spike in the histogram for a

particular token, then we successfully find a

separator token, and we use that token to separate

the text into multiple fields.

Fig 4.System Flow

V. EXPERIMENTAL RESULTS

 Experiments are made with the prototype

application that demonstrates the usefulness of the

application. The application is evaluated with

measures such as precision, recall and F-measure.

The results are evaluated using data and location

based, rule based and learning based approaches.

Ramya.Y IJECS Volume 3 Issue 12 December, 2014 Page No.9543-9546 Page 9546

Figure 5– Results with respect to date and location

As can be seen in Figure 5, it is evident that the rule

based and learning based approaches are evaluated.

When compared with the rule based approach, the

learning based approach exhibited high precision

and recall.

Figure 6 – Results with respect to list extraction

As can be seen in Figure 6, it is evident that the rule

based and learning based approaches are evaluated.

When compared with the rule based approach, the

learning based approach exhibited high precision

and recall.

VI .CONCLUSION AND FUTURE WORK

In this paper, we study the automatic

extraction of top-k lists from web pages available

over WWW. We take multiple web pages as input

and generate top-k lists from that in order to make a

summary of top-k lists. The summarized top-k lists

can help users to gain knowledge that will help in

making well informed decisions. We built a

prototype web application that takes web pages as

input and extract top-k lists from the given pages.

The output is the well formatted top-k summary that

is more meaningful and avoids searching for the

required information. It does mean that the output

can be taken away by the user directly. Our project

can be extended to extract information from nested

links and try to reduce computational work[8][9].

References

1. Soumen Chakrabarti Mining The Web:

Discovering Knowledge From Hypertext

Data”.

2. Zhixian Zhang, Kenny Q. Zhu , Haixun

Wang Hongsong Li ,“Automatic Extraction

of Top-k Lists from the Web”,, IEEE ,

ICDE Conference, 2013, 978-1-4673-4910-

9.

3. G. Miao, J. Tatemura, W.-P. Hsiung, A.

Sawires, and L. E. Moser,“Extracting data

records from the web using tag path

clustering”.

4. G. Miao, J. Tatemura, W.-P. Hsiung, A.

Sawires, and L. E. Moser, “Extracting data

records from the web using tag path

clustering,” in WWW, 2009, pp. 981–990.

5. C.-H. Chang and S.-C. Lui, “Iepad:

information extraction based on pattern

discovery,” in WWW, 2001, pp. 681–688.

6. Smith Tsang, Ben Kao, Kevin Y. Yip, Wai-

Shing Ho and Sau Dan Lee, “Decision Trees

for Uncertain Data”,IEEE conference,2011

7. F Z. Zhang, K. Q. Zhu, and H. Wang, “A

system for extracting top-k lists from the

web,” in KDD, 2012

8. . W. Gatterbauer, P. Bohunsky, M. Herzog,

B. Krüpl, and B. Pollak, “Towards domain

independent information extraction from

web tables”, In WWW, pages 71–80. ACM

Press, 20

9. W. Wu, H. Li, H. Wang, and K. Q. Zhu,

“Probase: A probabilistic taxonomy for text

understanding,” in SIGMOD, 2012.

10. Fumarola, T. Weninger, R. Barber, D.

Malerba, and J. Han, “Extracting general

lists from web documents: A hybrid

approach,” in IEA/AIE (1), 2011, pp. 285–

294.

11. J. Wang, H. Wang, Z. Wang, and K. Q.

Zhu, “Understanding tables on the web,” in

ER, 2012, pp. 141–155.

12. M. J. Cafarella, E. Wu, A. Halevy, Y.

Zhang, and D. Z. Wang, “Webtables:

Exploring the power of tables on the web”,

in VLDB Auckland, New Zealand, 2008.

