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Abstract: Text Summarization condenses a document or multiple documents into a smaller version by preserving its information 

content and the meaning. It is very difficult for a person to manually summarize large documents of text. TextSummarization methods can 

be classified into extractive and abstractive summarization. There are lots of techniques developed over the years for summarization. In this 

paper, some of the techniques are studied and reviewed. 
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1. Introduction 

Document summarization is an information retrieval task, 

which aims at extracting a condensed version of the original 

document. Readers will decide whether to read a complete 

document only after going through the summary. Even 

scientific people read a document only after reading the 

summary.  Summarization has become an important tool. 

 The summary will provide the main details of the document. 

The main goal of a summary is to present the main idea in a 

document or a set of documents in a short and readable 

paragraph. Summaries can be produced either from a single 

document or many documents. The summaries produced from 

multiple documents are called multi-document summarizer. 

A summary  can be employed in an indicative way as a pointer 

to some parts of the original document, or in an informative 

way to cover all relevant information of the text. Text 

Summarization methods can be classified into extractive and 

abstractive summarization. An extractive summarization 

method consists of selecting important sentences, paragraphs 

etc. from the original document and concatenating them into 

shorter form. The importance of sentences is decided based on 

statistical and linguistic features of sentences. An abstractive 

summarization method consists of understanding the original 

text and re-telling it in fewer words. It uses linguistic methods 

to examine and interpret the text and then find the new 

concepts and expressions to best describe it by generating a 

new shorter text that conveys the most important information 

from the original text document. 

There are various techniques of summarization. Some of them 

rely on centroid based techniques, semantic analysis. Some of 

the techniques will be biased to a particular topic, as in the case 

of query based summarization. These techniques actually 

retrieve documents related to a particular query. The QCS 

system (query, cluster, and summarize) retrieves relevant 

documents in response to a query, clusters these documents by 

topic and produces a summary for each cluster. Opinion 

summarization is another application of text summarization. 

Topic summarization deals with the evolution of topics in 

addition to providing the informative sentences. 

The major issues for multi-document summarization are as 

follows: first of all, the information contained in different 

documents often overlaps with each other, therefore, it is 

necessary to find an effective way to merge the documents 

while recognizing and removing redundancy. Another issue is 

identifying important difference between documents and 

covering the informative content as much as possible . 

 

2. Previous work 

There are several techniques developed till date. Single 

document summarization focus on summarizing a single 

document. But in a single document summary, it will contain 

the summary of that document only. Multiple document 

summary has an advantage that it is a collective summary of all 

the documents together. One doesn’t need to read summary of 

every document when it is a multi-document summary. 

 

2.1 Centroid-based summarization of multiple documents 

      A multi-document summarizer, called MEAD [1] generates 

summaries using cluster centroids produced by topic detection 

and tracking system. The process of identifying all articles on 

an emerging event is called Topic Detection and Tracking 

(TDT). The entry in the official TDT evaluation, called CIDR , 

uses modified TF*IDF to produce clusters of news articles on 

the same event. 

       A  new technique for multi-document summarization, 

called centroid-based summarization (CBS) which uses as input 

the centroids of the clusters produced by CIDR to identify 
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which sentences are central to the topic of the cluster, rather 

than the individual articles. It is implemented CBS in a system, 

named MEAD. 

      A key feature of MEAD is its use of cluster centroids, 

which consist of words which are central not only to one article 

in a cluster, but to all the articles. 

 

2.1.1. Centroid-based algorithm: MEAD decides which 

sentences to include in the extract by ranking them according to 

a set of parameters. The input to MEAD is a cluster of articles 

(e.g., extracted by CIDR) and a value for the compression rate 

r. For example, if the cluster contains a total of 50 sentences (n 

= 50) and the value of r is 20%, the output of MEAD will 

contain 10 sentences. Sentences are laid in the same order as 

they appear in the original documents with documents ordered 

chronologically. There are timestamps associated with each 

document. 

 

       SCORE (s) = Σi (wcCi + wpPi + wfFi)    (1) 

 

       where i (1 ≤ i ≤ n) is the sentence number within 

the cluster. 

 
2.1.2. Redundancy-based algorithm: A redundancy penalty 

(Rs) is subtracted for each sentence which overlaps with 

sentences that have higher SCORE values.  

 

       SCORE (s) =Σi (wcCi + wpPi + wfFi) - wRRs             (2) 
 

For each pair of sentences extracted by MEAD, we compute 

the cross-sentence word overlap according to the following 

formula: 

 

Rs = 2 * (# overlapping words) / (# words in   sentence 1 + 

                # words in sentence 2)         (3) 

 

             wR = Maxs (SCORE(s)) 

 

         Rs = 1 when the sentences are identical and Rs = 0 when 

they have no words in common. After deducting Rs, we re-rank 

all sentences and possibly create a new sentence extract. We 

repeat this process until re-ranking doesn’t result in a different 

extract. 

 

2.2 Multi-Document Summarization via Sentence-Level 

Semantic Analysis and Symmetric Matrix Factorization 

 

       The multi-document summarization framework is based on 

sentence-level semantic analysis and symmetric non-negative 

matrix factorization is introduced [2]. First sentence-sentence 

similarities using semantic analysis and construct the similarity 

matrix is calculated. Then symmetric matrix factorization is 

done, which is equivalent to normalized spectral clustering, is 

used to group sentences into clusters. Finally, the most 

informative sentences are selected from each group to form the 

summary. 

     A framework based on sentence-level semantic analysis 

(SLSS) and symmetric non-negative matrix factorization 

(SNMF) is introduced. SLSS can better capture the 

relationships between sentences in a semantic manner, it is used 

to construct the sentence similarity matrix. Based on the 

similarity matrix, the SNMF algorithm is used cluster the 

sentences. Finally the most informative sentences are  selected 

in each cluster considering both internal and external 

information. 

      Given a set of documents, these documents are cleaned by 

removing formatting characters. In the similarity matrix 

construction phase] the set of documents are decomposed into 

sentences, and each sentence is parsed into frame(s) using a 

semantic role parser. Pairwise sentence semantic similarity is 

calculated based on both the semantic role analysis and word 

relation discovery using WordNet. Once the pairwise sentence 

similarity matrix is obtained, symmetric matrix factorization is 

done to group these sentences into clusters in the second phase. 

In each cluster, the most semantically important sentences are 

identified using a measure combining the internal information 

(e.g., the computed similarity between sentences) and the 

external information (e.g., the given topic information).The 

selected sentences finally form the summary. 

 

2.3 Bayesian Query-Focused Summarization 

 

BAYESUM (for “Bayesian summarization”) [3], is a model for 

sentence extraction in query-focused summarization. 

BAYESUM leverages the common case in which multiple 

documents are relevant to a single query. BAYESUM can be 

used on large data sets and results in a state-of-the-art 

summarization system. 

        The key requirement of BAYESUM is that multiple 

relevant documents are known for the query in question. This 

task is very similar to the standard ad-hoc IR task, with the 

important distinction that we are comparing query models 

against sentence models, rather than against document models. 

       The model is applicable to any problem for which multiple 

relevant documents are known for a query, the  model is 

formulated in terms of relevance judgments. For a collection of 

D documents and Q queries, we assume we have a D × Q 

binary matrix r, where rdq = 1. In multidocument 

summarization, rdq will be 1 exactly when d is in the document 

set corresponding to query q; in search-engine summarization, 

it will be 1 exactly when d is returned by the search engine for 

query q. 

 

2.3.1. Language Modeling for IR: BAYESUM is built on the 

concept of language models for information retrieval. The idea 

behind the language modeling techniques used in IR is to 

represent either queries or documents (or both) as probability 

distributions, and then use the standard probabilistic techniques 

for comparing them. These probability distributions are always 

“bag of words” distributions that assign a probability to words 

from a fixed vocabulary. 

 

2.3.2.  Bayesian Statistical Model: A sentence appears in a 

document because it is relevant to some query, because it   

provides background information about the document. The 

model assumes that each word can be assigned a discrete, exact 

source.  

 

 

 

 

2.4 Automated Text Summarization in SUMMARIST 

 

SUMMARIST [4] is an attempt to create a robust automated 

text summarization system, based on the ‘equation’: 

summarization = topic identification + interpretation + 
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generation. The task of a Summarizer is to produce synopsis of 

any document (or a set of documents) submitted to it. These 

synopses may range from a list of isolated keywords that 

indicate the major content of the document(s), through a list of 

independent single sentences that express the major content, all 

the way up to a coherent, fully planned and generated 

paragraph that compresses the document. The more 

sophisticated a synopsis, the more effort it generally takes to 

produce. 

     Producing  an abstract requires stages of topic fusion and 

text generation not needed for extracts. The goal of 

SUMMARIST is to provide both extracts and abstracts for 

arbitrary English (or any other other-language) input text. 

 

2.4.1. Identification: The input is selected and filtered to 

determine the most important, central, topics. A text can have 

many (sub)-topics, and that the topic extraction process can be 

parameterized to include more or fewer of them to produce 

longer or shorter summaries. The topic identiification is done 

by methods based on position, cue phrases, word frequency and 

discourse segmentation. 

 

2.4.2.   Interpretation:  The second step in the summarization 

process is that of concept interpretation. A collection of 

extracted concepts are ‘fused’ into their one (or more) higher-

level unifying concept(s). Fusing topics into one or more 

characterizing concepts is the most difficult step of automated 

text summarization. Here, too, a variety of methods can be 

employed. All of them associate a set of concepts (the 

indicators) with a characteristic generalization (the fuser or 

head). The challenge is to develop methods that work reliably 

and to construct a large enough collection of indicator-fuser 

sets to achieve effective topic reduction.  

 

3) Summary Generation:  The final step in the summarization 

process is to generate the summary, consisting of the fused 

concepts. The output will contain three generation modules, 

associated as appropriate with the various levels for various 

applications. It can be a simple list of the summarizing topics, 

extract of the noun phrases and clauses from the input text, by 

following links from the fuser concepts through the words that 

support them back into the input text, well formed, fluent, 

summaries, taking as input the fuser concepts and their most 

closely related concepts. 

2.5 Opinion Summarization with Integer Linear 

Programming Formulation for Sentence Extraction and 

Ordering 

 

Opinion summarization [5] technique takes into account both 

content and coherence, simultaneously. A summary is 

considered as a sequence of sentences and acquire the optimum 

sequence from multiple review documents by extracting and 

ordering the sentences. This is achieved with a novel Integer 

Linear Programming (ILP) formulation. This is a powerful 

mixture of the Maximum Coverage Problem and the Traveling 

Salesman Problem. This is widely applicable to text generation 

and summarization tasks. Each candidate sequence is scored 

according to its content and coherence. The content score can 

be defined by opinions and the coherence score is developed in 

training against the review document corpus. 

This is a multidocument summarizer. A set of documents is 

given to the summarizer. A graph is constructed whose nodes 

are the sentences and there will be links between the nodes.  

The content score and coherence score is collectively combined 

to form the summary. The source document set includes set of 

concepts e. Each concept e is covered by one or more of the 

sentences in the document set. 

The two parameters content score and coherence score are 

calculated first. Opinion is adopted as a concept. Opinion can 

be defined as e = <t, a, p> as the tuple of target t, aspect a and 

its polarity p ={−1, 0, 1}. The t is the target of the sentence, a 

is the features of the target, p tells whether the sentence is a 

positive, negative or neutral sentence.  

The coherence score is denoted as c. The coherence scores of 

sentence pairs (local coherence) is calculated and their sum is 

taken as the global coherence. The local coherence score ci,j of 

two sentences x = {si, sj} and their order y = <si, sj>  is 

represented as  

  

         ci,j = w .(x, y)                                (4) 

 

w is a parameter vector and  (x, y) is a feature vector of the 

two sentences si and sj . the Passive-Aggressive algorithm to 

find w. The Passive-Aggressive algorithm is an online learning 

algorithm that updates the parameter vector by taking up one 

example from the training examples and outputting the solution 

that has the highest score under the current parameter vector. 

Using ILP (Integer Linear Programming) formulation the 

objective function can be decoded as: 

 

        Max {Σe wiei + (1-) Σa ci,jai,j }              (5) 

 

Eq.5 attempts to cover as much of the concepts included in 

input document set as possible according to their weights w  

and orders sentences according to discourse coherence c.  is a 

scaling factor to balance w and c. 

The summary meets  the condition of maximum summary size 

and also avoids redundancy. The concepts introduced helps in 

the avoidance of same sentence, arc or the concepts twice. 

3. New system 

3.1   A Context-Based Word Indexing Model for Document 

Summarization 

       Existing models for document summarization mostly use 

the similarity between sentences in the document to extract the 

most salient sentences. The documents as well as the sentences 

are indexed using traditional term indexing measures, which do 

not take the context into consideration. Therefore, the sentence 

similarity values remain independent of the context. 

    A context sensitive document indexing model based on the 

Bernoulli model of randomness. The Bernoulli model of 

randomness has been used to find the probability of the 

cooccurrences of two terms in a large corpus. The lexical 

association between terms is  used to give a context sensitive 

weight to the document terms. The resulting indexing weights 

are used to compute the sentence similarity matrix. This 

sentence similarity measure has been used with the baseline 

graph-based ranking models for sentence extraction. 
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The main motivation behind using the lexical association is the 

central assumption that the context in which a word appears 

provides useful information about its meaning. Cooccurrence 

measures observe the distributional patterns of a term with 

other terms in the vocabulary and have applications in many 

tasks pertaining to natural language understanding such as 

word classification, knowledge acquisition, word sense 

disambiguation, information retrieval, sentence retrieval , and 

word clustering. the Bernoulli model of randomness to find the 

probability of the cooccurrences of two terms in a corpus and 

use the classical semantic information theory to quantify the 

information contained in the cooccurrences of these two terms.  

       The lexical association metric is used to make a context-

sensitive document indexing model. The idea is implemented 

using a PageRank-based algorithm to iteratively compute how 

informative each document term is. Sentence similarity 

calculated using the context sensitive indexing reflect the 

contextual similarity between two sentences. This will allow 

the two sentences to have different similarity values depending 

on the context. The hypothesis is that an improved sentence 

similarity measure would lead to improvements in the 

document summarization. 

 

3.1.1. Exploring lexical association for text summarization: 

         The terms encountered in it can either be topical or 

nontopical. It is difficult to decide about the topicality of a term 

only on the basis of a single document, the patterns of term 

cooccurrence over a larger data set can be helpful. Lexical 

association measures use the term cooccurrence knowledge 

extracted from a large corpus. Nontopical terms appear 

randomly across all the document while topical terms appear in 

bursts. Therefore, when computed on a sufficiently large 

corpus, the lexical association value between two topical terms 

should be higher than the lexical association between two 

nontopical terms or a pair of topical and nontopical terms. 

               

3.1.2. Bernoulli Model of Randomness 

Bernoulli model of randomness is used to find the distribution 

between the terms in the document. The probability of each 

term in the document is calculated. Also the probability of 

terms occurring in different documents is also calculated. 

Stirling’s approximation is used to approximate the factorials 

included in the computation. Bernoulli model will finally give 

the self-information of the cooccurrences of term ti in Nj 

documents.  

 

3.1.3. Context-Based Word Indexing 

         After the lexical association measure between two terms 

in a document, the next task is to calculate the context sensitive 

indexing weight of each term in a document. A graph-based 

iterative algorithm is used to find the context sensitive indexing 

weight of each term. Given a document Di, a document graph 

G is built. Let G = (V,E) be an undirected graph to reflect the 

relationships between the terms in the document Di. V denotes 

the set of vertices, where each vertex is a term appearing in the 

document. E is a matrix of dimensions |V x V|. Each edge 

correspond to the lexical association value between the terms 

corresponding to the vertices vj and vk. The lexical association 

between the same terms is set to 0. The context-sensitive 

indexing weight of each word vj in a document Di, denoted by 

indexWt(vj) is calculated. It can be found in a recursive way 

using the Page-rank-based algorithm. 

 

3.1.4. Sentence Similarity Using the Context-Based Indexing 

        A  context-sensitive indexing weight to each document 

term. The next step is to use these indexing weights to calculate 

the similarity between any two sentences. Given a sentence in 

the document, the sentence vector is built using the indexWt().  

The sentence vector is calculated such that if a term appears in 

a sentence, it is given a weight indexWt(); otherwise, it is given 

a weight 0. The similarity between two sentences is computed 

using the dot product. 

3.2 System architecture 

 

 
Figure 1:  Overview of the architecture 

 

 

     The figure 1 shows the step-by-step view of the 

architecture. The input to the system is a document. The 

preprocessing techniques are done to find the different terms of 

the document. The Bernoulli model of randomness will 

distinguish the topical and nontopical terms. The lexical 

association between the terms obtained can be used for the 

construction of the graph which is based on the Page Rank 

based algorithm.  The sentence similarity is calculated to obtain 

the sentences to be included in the summary. 

  

4. Conclusion  

       The Bernoulli model of randomness has been used to 

develop a graph-based ranking algorithm for calculating how 

informative is each of the document terms. Using this model 

the association between the terms can be found. This greatly 

improves the summary than any of the previous works so far. 

The previous works did not take context into account. As a 

result, the summary is a set of some sentences that contain the 

prominent terms. So the resulting summary might not cover the 

entire meaning of the sentence. The context sensitive model 

provides much more better summary than others.  
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