

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 12 December 2014, Page No. 9528-9532

Divya Vidyadharan, IJECS Volume 3 Issue 12 December, 2014 Page No.9528-9532 Page 9528

A survey on various summarization techniques

Divya Vidyadharan
1
, Anju CR

2

1KMCT College of Engineering, Calicut University

Kozhikode, Kerala, India

divyav.email@email.com

21KMCT College of Engineering, Calicut University

Kozhikode, Kerala, India

anjucr@email.com

Abstract: Text Summarization condenses a document or multiple documents into a smaller version by preserving its information

content and the meaning. It is very difficult for a person to manually summarize large documents of text. TextSummarization methods can

be classified into extractive and abstractive summarization. There are lots of techniques developed over the years for summarization. In this

paper, some of the techniques are studied and reviewed.

Keywords: summarization, lexical association, Bernoulli model, context indexing.

1. Introduction

Document summarization is an information retrieval task,

which aims at extracting a condensed version of the original

document. Readers will decide whether to read a complete

document only after going through the summary. Even

scientific people read a document only after reading the

summary. Summarization has become an important tool.

 The summary will provide the main details of the document.

The main goal of a summary is to present the main idea in a

document or a set of documents in a short and readable

paragraph. Summaries can be produced either from a single

document or many documents. The summaries produced from

multiple documents are called multi-document summarizer.

A summary can be employed in an indicative way as a pointer

to some parts of the original document, or in an informative

way to cover all relevant information of the text. Text

Summarization methods can be classified into extractive and

abstractive summarization. An extractive summarization

method consists of selecting important sentences, paragraphs

etc. from the original document and concatenating them into

shorter form. The importance of sentences is decided based on

statistical and linguistic features of sentences. An abstractive

summarization method consists of understanding the original

text and re-telling it in fewer words. It uses linguistic methods

to examine and interpret the text and then find the new

concepts and expressions to best describe it by generating a

new shorter text that conveys the most important information

from the original text document.

There are various techniques of summarization. Some of them

rely on centroid based techniques, semantic analysis. Some of

the techniques will be biased to a particular topic, as in the case

of query based summarization. These techniques actually

retrieve documents related to a particular query. The QCS

system (query, cluster, and summarize) retrieves relevant

documents in response to a query, clusters these documents by

topic and produces a summary for each cluster. Opinion

summarization is another application of text summarization.

Topic summarization deals with the evolution of topics in

addition to providing the informative sentences.

The major issues for multi-document summarization are as

follows: first of all, the information contained in different

documents often overlaps with each other, therefore, it is

necessary to find an effective way to merge the documents

while recognizing and removing redundancy. Another issue is

identifying important difference between documents and

covering the informative content as much as possible .

2. Previous work

There are several techniques developed till date. Single

document summarization focus on summarizing a single

document. But in a single document summary, it will contain

the summary of that document only. Multiple document

summary has an advantage that it is a collective summary of all

the documents together. One doesn’t need to read summary of

every document when it is a multi-document summary.

2.1 Centroid-based summarization of multiple documents

 A multi-document summarizer, called MEAD [1] generates

summaries using cluster centroids produced by topic detection

and tracking system. The process of identifying all articles on

an emerging event is called Topic Detection and Tracking

(TDT). The entry in the official TDT evaluation, called CIDR ,

uses modified TF*IDF to produce clusters of news articles on

the same event.

 A new technique for multi-document summarization,

called centroid-based summarization (CBS) which uses as input

the centroids of the clusters produced by CIDR to identify

http://www.ijecs.in/

Divya Vidyadharan, IJECS Volume 3 Issue 12 December, 2014 Page No.9528-9532 Page 9529

which sentences are central to the topic of the cluster, rather

than the individual articles. It is implemented CBS in a system,

named MEAD.

 A key feature of MEAD is its use of cluster centroids,

which consist of words which are central not only to one article

in a cluster, but to all the articles.

2.1.1. Centroid-based algorithm: MEAD decides which

sentences to include in the extract by ranking them according to

a set of parameters. The input to MEAD is a cluster of articles

(e.g., extracted by CIDR) and a value for the compression rate

r. For example, if the cluster contains a total of 50 sentences (n

= 50) and the value of r is 20%, the output of MEAD will

contain 10 sentences. Sentences are laid in the same order as

they appear in the original documents with documents ordered

chronologically. There are timestamps associated with each

document.

 SCORE (s) = Σi (wcCi + wpPi + wfFi) (1)

 where i (1 ≤ i ≤ n) is the sentence number within

the cluster.

2.1.2. Redundancy-based algorithm: A redundancy penalty

(Rs) is subtracted for each sentence which overlaps with

sentences that have higher SCORE values.

 SCORE (s) =Σi (wcCi + wpPi + wfFi) - wRRs (2)

For each pair of sentences extracted by MEAD, we compute

the cross-sentence word overlap according to the following

formula:

Rs = 2 * (# overlapping words) / (# words in sentence 1 +

 # words in sentence 2) (3)

 wR = Maxs (SCORE(s))

 Rs = 1 when the sentences are identical and Rs = 0 when

they have no words in common. After deducting Rs, we re-rank

all sentences and possibly create a new sentence extract. We

repeat this process until re-ranking doesn’t result in a different

extract.

2.2 Multi-Document Summarization via Sentence-Level

Semantic Analysis and Symmetric Matrix Factorization

 The multi-document summarization framework is based on

sentence-level semantic analysis and symmetric non-negative

matrix factorization is introduced [2]. First sentence-sentence

similarities using semantic analysis and construct the similarity

matrix is calculated. Then symmetric matrix factorization is

done, which is equivalent to normalized spectral clustering, is

used to group sentences into clusters. Finally, the most

informative sentences are selected from each group to form the

summary.

 A framework based on sentence-level semantic analysis

(SLSS) and symmetric non-negative matrix factorization

(SNMF) is introduced. SLSS can better capture the

relationships between sentences in a semantic manner, it is used

to construct the sentence similarity matrix. Based on the

similarity matrix, the SNMF algorithm is used cluster the

sentences. Finally the most informative sentences are selected

in each cluster considering both internal and external

information.

 Given a set of documents, these documents are cleaned by

removing formatting characters. In the similarity matrix

construction phase] the set of documents are decomposed into

sentences, and each sentence is parsed into frame(s) using a

semantic role parser. Pairwise sentence semantic similarity is

calculated based on both the semantic role analysis and word

relation discovery using WordNet. Once the pairwise sentence

similarity matrix is obtained, symmetric matrix factorization is

done to group these sentences into clusters in the second phase.

In each cluster, the most semantically important sentences are

identified using a measure combining the internal information

(e.g., the computed similarity between sentences) and the

external information (e.g., the given topic information).The

selected sentences finally form the summary.

2.3 Bayesian Query-Focused Summarization

BAYESUM (for “Bayesian summarization”) [3], is a model for

sentence extraction in query-focused summarization.

BAYESUM leverages the common case in which multiple

documents are relevant to a single query. BAYESUM can be

used on large data sets and results in a state-of-the-art

summarization system.

 The key requirement of BAYESUM is that multiple

relevant documents are known for the query in question. This

task is very similar to the standard ad-hoc IR task, with the

important distinction that we are comparing query models

against sentence models, rather than against document models.

 The model is applicable to any problem for which multiple

relevant documents are known for a query, the model is

formulated in terms of relevance judgments. For a collection of

D documents and Q queries, we assume we have a D × Q

binary matrix r, where rdq = 1. In multidocument

summarization, rdq will be 1 exactly when d is in the document

set corresponding to query q; in search-engine summarization,

it will be 1 exactly when d is returned by the search engine for

query q.

2.3.1. Language Modeling for IR: BAYESUM is built on the

concept of language models for information retrieval. The idea

behind the language modeling techniques used in IR is to

represent either queries or documents (or both) as probability

distributions, and then use the standard probabilistic techniques

for comparing them. These probability distributions are always

“bag of words” distributions that assign a probability to words

from a fixed vocabulary.

2.3.2. Bayesian Statistical Model: A sentence appears in a

document because it is relevant to some query, because it

provides background information about the document. The

model assumes that each word can be assigned a discrete, exact

source.

2.4 Automated Text Summarization in SUMMARIST

SUMMARIST [4] is an attempt to create a robust automated

text summarization system, based on the ‘equation’:

summarization = topic identification + interpretation +

Divya Vidyadharan, IJECS Volume 3 Issue 12 December, 2014 Page No.9528-9532 Page 9530

generation. The task of a Summarizer is to produce synopsis of

any document (or a set of documents) submitted to it. These

synopses may range from a list of isolated keywords that

indicate the major content of the document(s), through a list of

independent single sentences that express the major content, all

the way up to a coherent, fully planned and generated

paragraph that compresses the document. The more

sophisticated a synopsis, the more effort it generally takes to

produce.

 Producing an abstract requires stages of topic fusion and

text generation not needed for extracts. The goal of

SUMMARIST is to provide both extracts and abstracts for

arbitrary English (or any other other-language) input text.

2.4.1. Identification: The input is selected and filtered to

determine the most important, central, topics. A text can have

many (sub)-topics, and that the topic extraction process can be

parameterized to include more or fewer of them to produce

longer or shorter summaries. The topic identiification is done

by methods based on position, cue phrases, word frequency and

discourse segmentation.

2.4.2. Interpretation: The second step in the summarization

process is that of concept interpretation. A collection of

extracted concepts are ‘fused’ into their one (or more) higher-

level unifying concept(s). Fusing topics into one or more

characterizing concepts is the most difficult step of automated

text summarization. Here, too, a variety of methods can be

employed. All of them associate a set of concepts (the

indicators) with a characteristic generalization (the fuser or

head). The challenge is to develop methods that work reliably

and to construct a large enough collection of indicator-fuser

sets to achieve effective topic reduction.

3) Summary Generation: The final step in the summarization

process is to generate the summary, consisting of the fused

concepts. The output will contain three generation modules,

associated as appropriate with the various levels for various

applications. It can be a simple list of the summarizing topics,

extract of the noun phrases and clauses from the input text, by

following links from the fuser concepts through the words that

support them back into the input text, well formed, fluent,

summaries, taking as input the fuser concepts and their most

closely related concepts.

2.5 Opinion Summarization with Integer Linear

Programming Formulation for Sentence Extraction and

Ordering

Opinion summarization [5] technique takes into account both

content and coherence, simultaneously. A summary is

considered as a sequence of sentences and acquire the optimum

sequence from multiple review documents by extracting and

ordering the sentences. This is achieved with a novel Integer

Linear Programming (ILP) formulation. This is a powerful

mixture of the Maximum Coverage Problem and the Traveling

Salesman Problem. This is widely applicable to text generation

and summarization tasks. Each candidate sequence is scored

according to its content and coherence. The content score can

be defined by opinions and the coherence score is developed in

training against the review document corpus.

This is a multidocument summarizer. A set of documents is

given to the summarizer. A graph is constructed whose nodes

are the sentences and there will be links between the nodes.

The content score and coherence score is collectively combined

to form the summary. The source document set includes set of

concepts e. Each concept e is covered by one or more of the

sentences in the document set.

The two parameters content score and coherence score are

calculated first. Opinion is adopted as a concept. Opinion can

be defined as e = <t, a, p> as the tuple of target t, aspect a and

its polarity p ={−1, 0, 1}. The t is the target of the sentence, a

is the features of the target, p tells whether the sentence is a

positive, negative or neutral sentence.

The coherence score is denoted as c. The coherence scores of

sentence pairs (local coherence) is calculated and their sum is

taken as the global coherence. The local coherence score ci,j of

two sentences x = {si, sj} and their order y = <si, sj> is

represented as

 ci,j = w .(x, y) (4)

w is a parameter vector and (x, y) is a feature vector of the

two sentences si and sj . the Passive-Aggressive algorithm to

find w. The Passive-Aggressive algorithm is an online learning

algorithm that updates the parameter vector by taking up one

example from the training examples and outputting the solution

that has the highest score under the current parameter vector.

Using ILP (Integer Linear Programming) formulation the

objective function can be decoded as:

 Max {Σe wiei + (1-) Σa ci,jai,j } (5)

Eq.5 attempts to cover as much of the concepts included in

input document set as possible according to their weights w

and orders sentences according to discourse coherence c.  is a

scaling factor to balance w and c.

The summary meets the condition of maximum summary size

and also avoids redundancy. The concepts introduced helps in

the avoidance of same sentence, arc or the concepts twice.

3. New system

3.1 A Context-Based Word Indexing Model for Document

Summarization

 Existing models for document summarization mostly use

the similarity between sentences in the document to extract the

most salient sentences. The documents as well as the sentences

are indexed using traditional term indexing measures, which do

not take the context into consideration. Therefore, the sentence

similarity values remain independent of the context.

 A context sensitive document indexing model based on the

Bernoulli model of randomness. The Bernoulli model of

randomness has been used to find the probability of the

cooccurrences of two terms in a large corpus. The lexical

association between terms is used to give a context sensitive

weight to the document terms. The resulting indexing weights

are used to compute the sentence similarity matrix. This

sentence similarity measure has been used with the baseline

graph-based ranking models for sentence extraction.

Divya Vidyadharan, IJECS Volume 3 Issue 12 December, 2014 Page No.9528-9532 Page 9531

The main motivation behind using the lexical association is the

central assumption that the context in which a word appears

provides useful information about its meaning. Cooccurrence

measures observe the distributional patterns of a term with

other terms in the vocabulary and have applications in many

tasks pertaining to natural language understanding such as

word classification, knowledge acquisition, word sense

disambiguation, information retrieval, sentence retrieval , and

word clustering. the Bernoulli model of randomness to find the

probability of the cooccurrences of two terms in a corpus and

use the classical semantic information theory to quantify the

information contained in the cooccurrences of these two terms.

 The lexical association metric is used to make a context-

sensitive document indexing model. The idea is implemented

using a PageRank-based algorithm to iteratively compute how

informative each document term is. Sentence similarity

calculated using the context sensitive indexing reflect the

contextual similarity between two sentences. This will allow

the two sentences to have different similarity values depending

on the context. The hypothesis is that an improved sentence

similarity measure would lead to improvements in the

document summarization.

3.1.1. Exploring lexical association for text summarization:

 The terms encountered in it can either be topical or

nontopical. It is difficult to decide about the topicality of a term

only on the basis of a single document, the patterns of term

cooccurrence over a larger data set can be helpful. Lexical

association measures use the term cooccurrence knowledge

extracted from a large corpus. Nontopical terms appear

randomly across all the document while topical terms appear in

bursts. Therefore, when computed on a sufficiently large

corpus, the lexical association value between two topical terms

should be higher than the lexical association between two

nontopical terms or a pair of topical and nontopical terms.

3.1.2. Bernoulli Model of Randomness

Bernoulli model of randomness is used to find the distribution

between the terms in the document. The probability of each

term in the document is calculated. Also the probability of

terms occurring in different documents is also calculated.

Stirling’s approximation is used to approximate the factorials

included in the computation. Bernoulli model will finally give

the self-information of the cooccurrences of term ti in Nj

documents.

3.1.3. Context-Based Word Indexing

 After the lexical association measure between two terms

in a document, the next task is to calculate the context sensitive

indexing weight of each term in a document. A graph-based

iterative algorithm is used to find the context sensitive indexing

weight of each term. Given a document Di, a document graph

G is built. Let G = (V,E) be an undirected graph to reflect the

relationships between the terms in the document Di. V denotes

the set of vertices, where each vertex is a term appearing in the

document. E is a matrix of dimensions |V x V|. Each edge

correspond to the lexical association value between the terms

corresponding to the vertices vj and vk. The lexical association

between the same terms is set to 0. The context-sensitive

indexing weight of each word vj in a document Di, denoted by

indexWt(vj) is calculated. It can be found in a recursive way

using the Page-rank-based algorithm.

3.1.4. Sentence Similarity Using the Context-Based Indexing

 A context-sensitive indexing weight to each document

term. The next step is to use these indexing weights to calculate

the similarity between any two sentences. Given a sentence in

the document, the sentence vector is built using the indexWt().

The sentence vector is calculated such that if a term appears in

a sentence, it is given a weight indexWt(); otherwise, it is given

a weight 0. The similarity between two sentences is computed

using the dot product.

3.2 System architecture

Figure 1: Overview of the architecture

 The figure 1 shows the step-by-step view of the

architecture. The input to the system is a document. The

preprocessing techniques are done to find the different terms of

the document. The Bernoulli model of randomness will

distinguish the topical and nontopical terms. The lexical

association between the terms obtained can be used for the

construction of the graph which is based on the Page Rank

based algorithm. The sentence similarity is calculated to obtain

the sentences to be included in the summary.

4. Conclusion

 The Bernoulli model of randomness has been used to

develop a graph-based ranking algorithm for calculating how

informative is each of the document terms. Using this model

the association between the terms can be found. This greatly

improves the summary than any of the previous works so far.

The previous works did not take context into account. As a

result, the summary is a set of some sentences that contain the

prominent terms. So the resulting summary might not cover the

entire meaning of the sentence. The context sensitive model

provides much more better summary than others.

References

[1] D.R. Radev, H. Jing, M. Sty�s, and D. Tam, “Centroid-

Based Summarization of Multiple Documents,” Information

Processing and Management, vol. 40, pp. 919-938,

http://portal.acm.org/ citation.cfm?id=1036118.1036121, Nov.

2004.

http://portal.acm.org/

Divya Vidyadharan, IJECS Volume 3 Issue 12 December, 2014 Page No.9528-9532 Page 9532

[2] D. Wang, T. Li, S. Zhu, and C. Ding, “Multi-Document

Summarization via Sentence-Level Semantic Analysis and

Symmetric Matrix Factorization,” Proc. 31st Ann. Int’l ACM

SIGIR Conf. Research and Development in Information

Retrieval, pp. 307-314,

http://doi.acm.org/10.1145/1390334.1390387, 2008.

[3] H. Daume´ III and D. Marcu, “Bayesian Query-Focused

Summarization,” Proc. 21st Int’l Conf. Computational

Linguistics and the 44
th

 Ann. meeting of the Assoc. for

Computational Linguistics, pp. 305-312,

http://dx.doi.org/10.3115/1220175.1220214, 2006.

[4] E. Hovy and C.-Y. Lin, “Automated Text Summarization

and the Summarist System,” Proc. Workshop Held at

Baltimore, Maryland (TIPSTER ’98), pp. 197-214,

http://dx.doi.org/10.3115/1119089. 1119121, 1998.

[5] H. Nishikawa, T. Hasegawa, Y. Matsuo, and G. Kikui,

“Opinion Summarization with Integer Linear Programming

Formulation for Sentence Extraction and Ordering,” Proc. 23rd

Int’l Conf. Computational Linguistics: Posters, pp. 910-918,

http://portal.acm.org/ citation.cfm?id=1944566.1944671, 2010.

[6] Pawan Goyal, Laxmidhar Behera and Thomas Martin

McGinnity, “A Context-Based Word Indexing Model for

Document Summarization”

Transactions on knowledge and data engineering, pp. 1693 –

1705, http://ieeexplore.ieee.org/

Author Profile

 Divya Vidyadharan is a student pursuing

MTech in Computer Science & Engineering at KMCT College of

Engineering, Calicut university, Kerala. She has done BTech. in

computer science & engineering from Calicut university, Kerala in

2012.

 Anju CR is Assistant Professor in

Computer Science & Engineering at KMCT College of Engineering,

Calicut university, Kerala. She has done MTech. in computer science

& engineering from KMCT College of Engineering, Calicut

university, Kerala in 2014. She has done BTech. in computer science

& engineering from SNS college of Technology, Anna university,

Tamil Nadu in 2007.

http://dx.doi.org/10.3115/1119089
http://portal.acm.org/

	PointTmp

