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ABSTRACT 

Retrial queues have been widely used to model many problems arising in telephone switching systems, telecommunication 

networks, computer networks and computer systems, etc.. In this paper an M
x
/G/1 retrial queue with two phase services, 

discouragement and general setup time is being studied where the server is subject to breakdown during service. Primary 

customers join the system according to Poisson process and receive the service immediately if the server is available upon arrival. 

Otherwise, they enter a retrial orbit with some probability and are queued in the orbit. They repeat their demand after some 

random interval of t ime. The customers are allowed to balk upon arrival. All the customers who join the queue have to undergo 

the first essential service, whereas only some of them demand for the second optional service. Using generating function approach 

and supplementary variable method, the steady state solutions for some queueing and reliability measures of the system are 

obtained. The sensitivity analysis has been carried out to explore the effects of system parameters on various performance 

measures. 

Keywords: Retrial queue, Batch arrivals, Two phase service, Unreliable server, Balking, Setup time, Supplementary variable, 

Generating function, Reliability. 

 

INTRODUCTION 

Retrial queueing system is characterized by the feature that the arriving customers who find the server busy join the retrial  

queue (orbit) to try again for their requests in random order and at random interval or leave the service area immediately. During 

last two decades considerable attention has paid to the analysis of queueing systems with repeated calls or customers. A single 

server retrial queueing system in which each customer has discrete service time has considered by Wu and Ke (2007). The time 

dependent system size probabilities have been studied by Parthasarathy and Sudesh (2007) for a retrial queue by employing 

continued functions. Amar (2009) derived an explicit formula for the generating function of the number of the customers in orbit 

for M
x
/G/1 retrial queue and exhibited exp licit forms of stochastic decomposition property. 

The queueing systems with second optional service are characterized by the feature that all arrivals demand the first essential 

service, whereas some of them require second optional service which can also be provided by the same server. Stability conditions 

and steady state analysis were investigated by Dimitrion and Langaris (2010) for a repairable queueing model with two phase 

service and retrial customers.  

 The study of a queueing model with unreliable server is an important interdisciplinary topic in queueing theory and reliabili ty 

theory, as it considers not only the queueing characteris tics for the system but also reliability indices for the server. An M/G/1 
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retrial queueing system with disasters and unreliable server was investigated by Wang et al. (2007). A discrete time Geo/G/1 

retrial queue has been studied by Wang and Zhao (2007) where the server provides two types of services and also subject to 

breakdowns. Multi server retrial queue with the Batch Markovian Arrival Process (BMAP) was considered by Kim et al. (2007).  

Wang and Zhang (2009) analyzed a discrete time single server retrial queue with geometrical arrival for both positive and 

negative customers in which the server is subject o breakdowns and repairs.  

The study of reliability indices for unreliable server queueing system has been done by many researchers. By using 

supplementary variable technique some queueing and reliability characteristics of the M
x
/(G1,G2)/1 retrial queueing system have 

been derived by Ke and Chang (2009).  

The customers are said to be impatient if they tend to join the queue only when a short wait is expected and tend to 

remain in line if the wait has been sufficiently s mall. When queue length is sufficiently long or due to some other reason, t he 

arriving customers would not like to join the queue; this behavior of customers is known as balking.  Operating characteristics of 

an M
[x]

/G/1 queueing system under a variant vacation policy, where the server leaves for a vacation as soon as the system is empty 

was studied by Ke (2007).  

The retrial queue with second optional service, balking, server failures, repairs and setup is the subject of investigation in 

the present study. The rest of paper structured as follows.  The model under investigation is described along with notations and 

assumptions in section 2. In section 3, we establish the steady state equatio ns after introducing supplementary variables 

corresponding to elapsed service time, setup time and repair time. Section 4 provides mathemat ical analysis to obtain joint 

probabilit ies and marg inal p robabilities. Some queueing performance indices are d iscuss ed in section 5. Sect ion 6 is devoted to the 

reliability indices of the server. Some particular cases are deduced in section 7. The sensitivity analysis in order to valid ate the 

analytical results is given in section 8. Conclusions are outlined in the final section 9.  

2. MODEL DESCRIPTION 

M
x
/G/1 retrial queueing system with unreliable server, balking, setup and second optional service is considered by making the 

following assumptions: 

 The customers arrive at the system according to a compound Poisson process with random batch size.  

 If an arriving customer finds the server idle, he may obtain service immediately. There is a single unreliab le server who 

provides two kinds of general heterogeneous services to the customers on a first come first served (FCFS) bas is.  

 The first essential service is needed to all arriving customers; the essential service time has general distribution. As soon 

as the essential service of a customer is completed, he may opt for second optional service with probability r or else with 

probability (1-r), leaves the system.  

 The arriv ing customer on finding the server under busy, setup or broken down state must leave the service area and 

repeats its demand with rate θ after some random interval of time. The inter arrival time and retrial times of batches are 

exponentially distributed. 

 The server may breakdown while servicing the customers. We assume that the life time of the server is exponentially  

distributed with rate α1 and α2 in case when he is rendering first essential service and second optional service, 

respectively.  

 When the server breaks down, it is sent for repair. The repair time distributions for both service phases are arbitrarily  

distributed with rate 1 and 2.  

 The customers may balk from retrial queue with different balking rates on finding the server in busy, setup or broken 

down states due to impatience.  

 The server is recovered after the completion of the repair and starts service of the customers immediately.  

 

NOTATIONS 
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   Mean arrival rate of the customers 

X   Random variab le denoting the batch size 

ai   Pr[X=i] 

X(z)   Generating function for batch size X, i.e. 






1

)(

k

k
k zazX  

θ   Mean retrial rate of the customers 

iPh , 
iSh , 

iRh  Joining probability of the customers from retrial queue when the server is busy, in setup and under 

repair state while rendering i
th

 phase (i=1,2) service  

αi (i=1,2)   Mean failu re rate of the server in i
th

 phase service 

i, θ i, i                       Serv ice rate, setup rate and repair rate (i=1,2) 

i(x), θ i(y), i(y)                Hazard service rate, setup rate and repair rate 

wi(x), s i(y), bi(y) Probability density functions for service time, setup time and repair time in case of  i
th

 phase (i=1,2) 

service  

Wi(x), Si(x), Bi(x) Distribution functions for i
th

 (i=1,2) phase of service time, setup time and repair time  

Qn(t) Probability that there are n customers in the retrial queue at time t when the server is in id le state 

),()1( xtPn  Probability that there are n customers in the retrial queue at time t when the server is busy with first 

essential service and elapsed service time lies in (x, x+dx) 

),,()1( yxtSn  Probability that there are n customers in the retrial queue at time t when the server is in setup state for 

first essential service and the elapsed service time for the customer under service is  equal to x, and 

elapsed setup  time lies in (y, y+dy) 

),,()1( yxtRn  Probability that there are n customers in the retrial queue at time t when the server is in repair state 

while broken down during first essential service and the elapsed service time fo r the customer under 

service is equal to x, and elapsed repair time lies in (y, y+dy) 

)()2( tPn  Probability that there are n customers in the retrial queue at time t when the server is busy in second 

optional service  

),()2( ytSn  Probability that there are n customers in the retrial queue at time t when the server is in setup state , for 

second optional service and elapsed setup  time lies in (y, y+dy) 

),()2( ytRn  Probability that there are n customers in the retrial queue at time t when the server is broken down 

while rendering the second optional service and elapsed repair time lies in (y, y+dy) 

 

The hazard rates are given by: 
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3. GOVERNING EQUATIONS 

We construct below the partial differential equations governing the model for the system state ‘n’ (n≥0) by assuming the 

elapsed service time, elapsed setup time and the elapsed repair time as supplementary variables:  


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n                                                                             (1) 
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The following boundary conditions are taken into consideration 
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For steady state equations, we define the probabilit ies as follows: 
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The steady state equations for the system state ‘n’ corresponding to equations. (1)- (7) are g iven by 
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Under steady state, the boundary conditions are 
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              4. THE ANALYSIS 

In order to provide the analytic solution, the following probability generating functions are defined as follows: 
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Multiplying equations (14)-(26) by appropriate power of z
n
 and summing over n  
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The boundary conditions yield 
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Theorem 1: The partial probability generating functions when the server is in busy state, under setup state and in repair state 

respectively, are given by   
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where  )(1)( xWxW ii  , )(1)( ySyS ii  and )(1)( yByB ii  , i=1,2.                           

Proof: For p roof see appendix A-I. 

 

Theorem 2: The marg inal generating functions are obtained as 

 

),0(
)(

)(*1
)( )1(

1

1)1( zP
z

zw
zP nn







 





                                                                                                                        (45) 

),0(
)(

)(*
)( )1(

22

1)2( zP
z

zrw
zP nn















                                                                                                                         (46)                                                            

),0(
))(1(

}))(1((1

)(

)(*1
)( )1(

*

1

1
1

)1(

1

1 zP
zXh

yzXhs

z

zw
zS n

s

s
n

























 









                                                                          (47) 

),0(
))(1(

}))(1((1

)(

)(*
)( )1(

*

22

1
2

)2(

2

2 zP
zXh

yzXhs

z

zrw
zS n

s

s
n





































                                                                          (48) 

),0(
))(1(

}))(1((1

)(

)(*1
}))(1({)( )1(

*

1

1*
1

)1(

1

1

1
zP

zXh

yzXhb

z

zw
yzXhszR n

R

R
Sn

























 









                                       (49)                                                     

),0(
))(1(

}))(1((1

)(

)(*
}))(1({)( )1(

*

22

1*
2

)2(

2

2

2
zP

zXh

yzXhb

z

zrw
yzXhszR n

R

R
Sn





































                                      (50)                                                                                                                                                                                      

Proof: For proof see appendix A-II. 
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Theorem 3: The probability generating functions for the number of customers in the ret rial queue and in the system are  
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Proof: We use the marginal probabilit ies and the following relat ion to obtain R(z) and L(z) 
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Theorem 4: The expected number of customers in the retrial queue  is 
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The expected number of customers in the system is  
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Proof: The expressions for the expected customers in the retrial queue and in the system are obtained by using 
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5. PERFORMANCE MEASURES 

Theorem 5: The probability that the server is in idle, busy with i
th

 (i=1,2) phase of service, setup and  under repair, respectively 

are given by 
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Proof: For proof see appendix A-III. 

6. RELIABILITY INDICES  

In order to analyze reliability indices, we consider setup and breakdown states as absorbing states. By using the same notations as 

in the previous section, we can get the following set of equations: 
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The boundary conditions are: 
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Taking Laplace transform, we get 
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The probability generating functions in the form of Laplace transformation  can be written as 
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Multiplying equations (66)-(65) by suitable powers of z and summing, we get 
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Let zs be the root of equation 
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Now we derive some reliability indices as follows: 

(i) The availability of the server under steady state is 
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(ii) The failu re frequency of the server under steady state can be obtained as  
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 (iii) The mean time to failure is given by 
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7. SENSITIVITY ANALYSIS 
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 The graphical presentations of E[R] and E[L] have been done in figures 1-6. For numerical results summarized in tables 1-4, 

we set default parameters as 

 We have plotted the graphs in figs 1-6 for different service time distributions, namely (a) M/E4/1 (b) M/D/1 (c) M/γ/1. 

Figures 1-4 depict the variation in the expected number of customers in the retrial queue E[R] and in the system E[L] for both 

homogeneous and heterogeneous failure rates by continuous and discrete curves, respectively, for d ifferen t values of repair rates 

and different sets for balking probabilit ies, respectively by varying the arrival rate λ. The balking parameters (i.e. join in g 

probability) chosen for different sets are as follows: 

 Set I: hP1= hP2 =0.7, hs1=hs2=0.8, hR1=hR2=0.9  

 Set II: hP1= hP2 =0.3, hs1=hs2=0.4, hR1=hR2=0.6 

 Set III: hP1= hP2 =0.1, hs1=hs2=0.3, hR1=hR2=0.4 

 Set IV: hP1= hP2 =1, hs1=hs2=1, hR1=hR2=1    

From figures 1-6, it can be seen that E[R] and E[L] increase first gradually and then significantly with the in crease in 

arrival rate λ. The expected number of customers in the retrial queue E[R] and in the system queue E[L] increase almost linea rly  

for lower values of arrival rates and then a sharp increment can be found. It can be noticed in figures 1 (a -c) and 2 (a-c) that E[L] 

and E[R] both increase with the increment in the failure rates. There is noteworthy effect of repair rates on E[R] and E[L] a s can 

be seen in figures 3(a-c) and 4(a-c); as we increase the repair rate, the expected number of customers in the retrial queue E[R] and 

in the system queue E[L] demonstrate the decreasing trends. A notable increasing effect of joining probabilit ies on E[R] and E[L] 

can be noticed from figures 5 (a -c) and 6 (a-c). 

In all figs, we see that E[R] and E[L] are higher fo r heterogeneous arrival rates in comparison to homogeneous arrival 

rates. The increasing (decreasing) pattern of E[R] and E[L] for increasing values of arrival rate, failure rate, repair rate and join ing 

probabilit ies tally with physical experiences. For heavy traffic, the effects are more prominent which is same as we expect for the 

real t ime system. 

8. CONCLUDING REMARKS 

           In this work, we have studied balking aspects while predicting the performance of unreliable M
x
/G/1 queueing systems 

with second optional service. By using the supplementary variable method, we have modeled the system as a Markov chain and 

obtained stationary queueing and reliability measures of interest.  

 Batch arrival queueing model with retrials has potential applicability in many real world congestion situations. In our 

investigations we have incorporated the server breakdown which is an unavoidable phenomenon for any queueing systems. 

Moreover, the optional services and retrial attempts considered can be realized in queuein g models while modeling many pract ical 

applications related to computer sciences, communication, production, human- computer interactions and so on. The incorporation 

of more realistic assumptions namely (i) bulk arrival (ii) retrial attempts (iii) unreliab le server (iv) balking, altogether make our 

model more versatile and robust than previous models. The numerical illustrations given provide an insight regarding 

computational tractability of the analytical results established for the concerned model.  

 

APPENDIX 

 

A-I: Proof of theorem 1:  

 

Solution of eq. (29) gives  
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By using (35) in (29), we get  
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Similarly from equations (32) and (40) 
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Equations (30) and (33) g ive  
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From equations (37), (A.1) and (A.4), we obtain 
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From equations (A.3), (A.4) and (38), we have 
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By using equations (28) in (A.7), we get 
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A-II: Proof of theorem 2: 

 

Equations (31), (A.7) and (A.8) give  
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Integrating equation (A.8) by parts, we get 
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Again from equation (A.1) and (A.9), we get 
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On integrating equation (A.3) by parts and using equation (A.9), we obtain 
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Now from equations (A.7) and (A.9), we get 
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A-III Proof of theorem 4: 

To obtain required probabilities, we use 
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2,1),(lim )(
1   izPP i

nzBi
                                                                                                       (A.15) 

2,1),(lim )(
1   izSP i

nzSi
                                                                                                       (A.16) 

2,1),(lim )(
1   izRP i

nzRi
                                                                                                       (A.17) 
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          Fig 1: E[R] vs λ for (a) M/E4/1                 Fig 2: E[L] vs λ for (a) M/E4/1  
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       Fig 3: E[R] vs λ for (a) M/E4/1                  Fig 4: E[L] vs λ for (a) M/E4/1  
                 (b) M/D/1 (c) M/γ/1                                    (b) M/D/1 (c) M/γ/1 
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        Fig 5: E[R] vs λ for (a) M/E4/1                  Fig 6: E[L] vs λ for (a) M/E4/1  
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                   (b) M/D/1 (c) M/γ/1                                    (b) M/D/1 (c) M/γ/1 
 
 
 
 

 


