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ABSTRACT

Retrial queues have been widely used to model many problems arising in telephone switching systems, telecommunication
networks, computer networks and computer systems, etc.. In this paper an M*/G/1 retrial queue with two phase services,
discouragement and general setup time is being studied where the server is subject to breakdown during service. Primary
customers join the system according to Poisson process and receive the service immediately if the server is available upon arrival.
Otherwise, they enter a retrial orbit with some probability and are queued in the orbit. They repeat their demand after some
random interval of time. The customers are allowed to balk upon arrival. All the customers who join the queue have to undergo
the first essential service, whereas only some of themdemand for the second optional service. Using generating function approach
and supplementary variable method, the steady state solutions for some queueing and reliability measures of the system are
obtained. The sensitivity analysis has been carried out to explore the effects of system parameters on various performance

measures.

Keywords: Retrial queue, Batch arrivals, Two phase service, Unreliable server, Balking, Setup time, Supplementary variable,

Generating function, Reliability.

INTRODUCTION

Retrial queueing system is characterized by the feature that the arriving customers who find the server busy join the retrial
queue (orbit) to try again for their requests in random order and at random interval or leave the service area immediately. During
last two decades considerable attention has paid to the analysis of queueing systems with repeated calls or customers. A single
server retrial queueing system in which each customer has discrete service time has considered by Wu and Ke (2007). The time
dependent system size probabilities have been studied by Parthasarathy and Sudesh (2007) for a retrial queue by employing
continued functions. Amar (2009) derived an explicit formula for the generating function of the number of the customers in orbit
for M*/G/ 1 retrial queue and exhibited exp licit forms of stochastic decomposition property.

The queueing systems with second optional service are characterized by the feature that all arrivals demand the first essential
service, whereas some of them require second optional service which can also be provided by the same server. Stability conditions
and steady state analysis were investigated by Dimitrion and Langaris (2010) for a repairable queueing model with two phase
service and retrial customers.

The study of a queueing model with unreliable server is an important interdisciplinary topic in queueing theory and reliability

theory, as it considers not only the queueing characteristics for the system but also reliability indices for the server. An M/G/1
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retrial queueing system with disasters and unreliable server was investigated by Wang et al. (2007). A discrete time Geo/G/1
retrial queue has been studied by Wang and Zhao (2007) where the server provides two types of services and also subject to
breakdowns. Multi server retrial queue with the Batch Markovian Arrival Process (BMAP) was considered by Kim et al. (2007).
Wang and Zhang (2009) analyzed a discrete time single server retrial queue with geometrical arrival for both positive and
negative customers in which the server is subject o breakdowns and repairs.

The study of reliability indices for unreliable server queueing system has been done by many researchers. By using
supplementary variable technique some queueing and reliability characteristics of the M*/(G,,G,)/1 retrial queueing system have
been derived by Ke and Chang (2009).

The customers are said to be impatient if they tend to join the queue only when a short wait is expected and tend to
remain in line if the wait has been sufficiently small. When queue length i sufficiently long or due to some other reason, the
arriving customers would not like to join the queue; this behavior of customers is known as balking. Operating characteristics of
an MY/G/1 queueing system under a variant vacation policy, where the server leaves for a vacation as soon as the systemis empty
was studied by Ke (2007).

The retrial queue with second optional service, balking, server failures, repairs and setup is the subject of investigation in
the present study. The rest of paper structured as follows. The model under investigation is described along with notations and
assumptions in section 2. In section 3, we establish the steady state equations after introducing supplementary variables
corresponding to elapsed service time, setup time and repair time. Section 4 provides mathematical analysis to obtain joint
probabilities and marginal probabilities. Some queueing performance indices are discuss ed in section 5. Section 6 is devoted to the
reliability indices of the server. Some particular cases are deduced in section 7. The sensitivity analysis in order to valid ate the

analytical results is given in section 8. Conclusions are outlined in the final section 9.

2. MODEL DESCRIPTION

M/ G/1 retrial queueing systemwith unreliable server, balking, setup and second optional service is considered by making the

following assumptions:

» The customers arrive at the systemaccording to a compound Poisson process with random batch size.

» Ifan arriving customer finds the server idle, he may obtain service immediately. There is a single unreliable server who
provides two kinds of general heterogeneous services to the customers on a first come first served (FCFS) basis.

» The first essential service is needed to all arriving customers; the essential service time has general distribution. As soon
as the essential service of a customer is completed, he may opt for second optional service with probability r or else with
probability (1-r), leaves the system.

» The arriving customer on finding the server under busy, setup or broken down state must leave the service area and
repeats its demand with rate 0 after some random interval of time. The inter arrival time and retrial times of batches are
exponentially distributed.

» The server may breakdown while servicing the customers. We assume that the life time of the server is exponentially
distributed with rate oy and op in case when he is rendering first essential service and second optional service,
respectively.

» When the server breaks down, it is sent for repair. The repair time distributions for both service phases are arbitrarily
distributed with rate 3; and j3,.

» The customers may balk from retrial queue with different balking rates on finding the server in busy, setup or broken
down states due to impatience.

» The serveris recovered after the completion of the repair and starts service of the customers immed iately.

NOTATIONS
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Mean arrival rate of the customers
Random variab le denoting the batch size
Pr[X=i]
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Generating function for batch size X, ie. X(z)= Z:akzk
k=1
Mean retrial rate of the customers
Joining probability of the customers from retrial queue when the server is busy, in setup and under
repair state while rendering i phase (i=1,2) service
Mean failure rate of the server in i phase service
Service rate, setup rate and repair rate (i=1,2)

Hazard service rate, setup rate and repair rate

Probability density functions for service time, setup time and repair time in case of i phase (i=1,2)
service

Distribution functions for i (i=1,2) phase of service time, setup time and repair time

Probability that there are n customers in the retrial queue at time t when the server is in idle state
Probability that there are n customers in the retrial queue at time t when the server is busy with first
essential service and elapsed service time lies in (X, x+dx)

Probability that there are n customers in the retrial queue at time t when the server is in setup state for

first essential service and the elapsed service time for the customer under service is equal to x, and

elapsed setup time lies in (y, y+dy)
Probability that there are n customers in the retrial queue at time t when the server is in repair state

while broken down during first essential service and the elapsed service time for the customer under

service is equal to x, and elapsed repair time lies in (y, y+dy)

Probability that there are n customers in the retrial queue at time t when the server is busy in second
optional service

Probability that there are n customers in the retrial queue at time t when the server is in setup state, for
second optional service and elapsed setup time lies in (y, y+dy)

Probability that there are n customers in the retrial queue at time t when the server is broken down

while rendering the second optional service and elapsed repair time lies in (y, y +dy)

The hazard rates are given by:

4 (X)dx =

dwW; (x)

W, () o; (y)dy =

dsi (y) B (y)dy = dB; (y)

,i1=12
1-Si(y) 1-Bi(y)

3. GOVERNING EQUATIONS

We construct below the partial differential equations governing the model for the system state ‘n’ (n>0) by assuming the

elapsed service time, elapsed setup time and the elapsed repair time as supplementary variables:

(% A+ ne)Qn ()= 12P? O+ W=D P (6,002 () ()
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k=1
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The following boundary conditions are taken into consideration

P (10) = 2P O + A= D) P (604 (0dx+ (N +D0Qpia (1), n21 ©
P (10) = PP ) + =) [P (6 a1 (9 + ﬂki_lakan ® ()
s, x0)=;PP(t,x), n>1 (10)
s t,0)=a,P? 1), n>1 (11)
R (0= [ (x. a(ydy, n=1 (12)
RP 0 =["sP Mo (dy, nz1 13)

For steady state equations, we define the probabilities as follows:
Qn = im0 Qn(®), P () = lim¢_yo PV (¢, ), PP =lim_o P{ ),
RY 06 y) =lime_o RP (6, %, y), RP) () = lim_g RP (¢, )

The steady state equations for the systemstate ‘n’ corresponding to equations. (1)- (7) are given by

(2+10)Qn = 2P +@-1)[ " P (01 (x)x (14)
(% (9 + hg + aljpn(” ()= thg kéak P00+ RO Ay, n21 (15)
(ai +O() + zhsljsé” (x,y) = Ahs, é""ksrﬁ”k (xy), nz1 (16)
(% A + /lthjR,ﬁl) (x )= AhRéak Ry (0 Y), n>1 (10
(s + A, + 12 )P = i, 3 P+ [ RO WB2(ndx+ [ PP () (), n=1 (18)

k=1
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(%+ﬂz(y)+ﬂhR2jRéz)(y)=ﬁhR2 > aRP (v), n>1

k=1

Under steady state, the boundary conditions are

PP = #2PZ + A=) P& 00 ()dx+ (N +DOQn.q, N1

n+1

PP () = PP + 21— r)j P()(X),ul(x)dx+/12aank n>1
k=1

sW(x0)=yPP(x), n>1

2 ©0)=a,P?, nx1

RP(x0) = [sP (x ey (n)dy, n=1

RP 0 =["sP (16 (ydy, nz1

4. THE ANALYSIS

(19)

(20)

(21)

(22)

(23)
(24)

(25)

(26)

In order to provide the analytic solution, the following probability generating functions are defined as follows:

X(2)=Y az*, PP x2)=Y PP 2" AP 2)= Y PP2",sP (x,y,2)= > 5P (x, y)z"

k=1 n=0 n=0 n=0

sP(y,0)=3 522" RO (xy.2)=Y RO 2", RPA(y,2) = Y RP (y)2"

n=0 n=0 n=0

Multiplying equations (14)-(26) by appropriate power of z" and summing over n

(2 +n60)Qn(2) = PP (2) + @-T) j:’ PP (%, 2) 4 (x)dx, n>0 @7
% + 1 (X) + Ahg + aljpn‘l) (x2) =g X ()RP (% 2) + ["RP (x y. )41 ()dy, n=1 (28)
(3 +61(y) + g, ]sr(,l) (x,Y,2) = 4hs X (2)S{V (x,y,2), n=1 (29)
oe
(%wl(y)MthjR#) (x,y,2) = 2hg X (2R (x,y,2), n>1 (30)
(12 + A, +ap P (2) = g, X ()P + j RO (y,2) 4, (y)dy+ rj P® (x, 2) 1 (¥)dx, n>1 (31)
0
[5 62(y>+zh521]sr22>(y, 2)=hs, X(2)${? (y,2), n=1 (32)
(— + B2 (y) + Ahg, jR( )(y,2) = Ahg, X (2)RP (y,2), n>1 (33)
The boundary conditions yield
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PO (@) = 1P @27 + -1z [P (x, 2 00X+ X (2)Qq () + (140 27Q4 (2)

(34)
-(@1- r)z‘ljgo Po(l) (X, Z) 4 (X)dx — yzz_lPo(z) (2), n>1
sP(x0,2) =a;PP (x,2), n=1 (35)
$2(0.2)=a,P? (2), n=1 @) RO =["sPxy.0(x)dy nx1
(37) RP (0.2)=["sP (0 (y.dy, n=1

38)
Theorem 1: The partial probability generating functions when the server is in busy state, under setup state and in repair state

respectively, are given by

P (x,2) = PV (0,2) e W (x) (39)

p@ ()= WA pay ) (40)
Hy +¢1(2)

SO (x,y,2) = ayP® (x, 2)e " Eg (41)

P (y,2) =P (2)e 245y (42)

R® (x,y,2) = ay PP (x,2)s* (g, (L- X @)ye XV B () 43)

RP (y,2) = P2 (2) s* (hg, (L- X (2))ye "2V B, () (44)

where szl—wi (x), mzl—si(y) and mzl—Bi(y) ,i=1,2.

Proof: For proof see appendix A-I.

Theorem 2: The marginal generating functions are obtained as

P (7) M}pﬂ) 0, 45
n(Z){ ") n (0,2) (45)
pn(2) (2) = {Lﬁl(z)}pn(l) (0,2) (46)
Ho + ¢2(2)
Sr(]l) (2)= al{l_ W*¢1(Z)} 1-— 5*(ﬁh51 @-X(2)y} Pn(l) ©,2) (47)
$(2) Ahg (1-X(2))
Sr(]z) @ =a2{ I’W*¢1(Z) } 1—5*(ﬂh52 @-X(2)y} Pn(l) ©,2) (48)
Ha +¢2(2) Ahs, 1-X(2))
O ) 1-w*g(2) | |1-b (hg A= X@)Y}| _
Ry’ (2) =ays {ahs (1 X(2))y ") H ey (- X (2) P (0,2) (49)
@ ) w* gy (z) ||1-b (g, L= X (@)} _
Ry’ (2)=ays {ﬂ,hsz @-X(2))y Ly + by (Z)}{ ﬂ,th 11— X(2) P.7(0,2) (50)

Proof: For proof see appendix A-II.
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Theorem 3: The probability generating functions for the number of customers in the retrial queue and in the systemare

9B +hgy s, AU (2) 0~ )L W 1 (2)(tz + 62 ()R (2) _ [y s Ao 1 (2100 (2

R(2)
#1(2)B #(2)B
(51)
L(2)= [#1B + zhg,hs, A (AX(2) — 6 = 1)1 — W* 1 (2)) (12 + $2(2))Qn (2) . [zrhg, s, Ao W™ ¢ (2)1Qn (2)
#1(2)B #1(2)B
(52)
where
A =hg hs, +aihg (1-S” (Ahg, (1- X (2))y})+aihg, (1-S” (Ahg, (1- X (2))y})A-B  (Ahg, (1- X (2))y)
B =i, N, Ns, Ns, L~ X (D)2 W' (2)(11z + 42 (2)) + T W . (2)
Proof: We use the marginal probabilities and the following relation to obtain R(z) and L(2)
R2)=Qn (@) + PV () + PP (2)+5P (@) + 5P )+ RP () + RP ()
L(2)=Qn(2)+ PP @)+ PP () + 5P (2) + 5P (2) + R (2) + RP ()
Theorem4: The expected number of customers in the retrial queue is
B hg hr,hs, hs,
E[L]= o+ T, E[XIEML]) {EW;(r — 0+ 2) + 10y (1+ E[B; ) +{AE[X (X 1)) + A1 E[X g }
{E2[S1]+ E2[B;1}+ 201 2%hg hs EX[X]E[B, JE[S,]
(53)

where f = hpl + alhsl E[Sl] + alhrl E[Bl]

The expected number of customers in the system is

hr, R, hs hs, EMWL (T + £2,0)
2E[X )1+ ru EW, JEW, DEE[X ]}
Proof: The expressions for the expected customers in the retrial queue and in the systemare obtained by using

oL(z) and E[R]ZGR(Z)
2 z=1 z z=1

E[R] = E[L] + (54)

E[L] =

where L(z) and R(2) are given in equations (51) and (52).

5. PERFORMANCE MEASURES

Theorem 5: The probability that the server is in idle, busy with i (i=1,2) phase of service, setup and under repair, respectively

are given by
r
PBl _ Ha¥ (55) Pg, = Hmy
2 aj | Qj ? 2 aj | Qg
1+V/(ﬂ2+rﬂ1)2(1+*+*) l+t//(,uz+ry1)2(1+—+—)
= O b o2 O B

(56)

Madhu Jain, IJECS Volume 3 Issue 12 December, 2014 Page N0.9462-9475 Page 9468



aVerid

2 -
91{1+ wuy + 1)) (L+ % + Z')}

i=1 i i

rasiy
2
92{144//(#2 + rul)é(u‘;wz: }
a iy
2 .
ﬂl{lw(uz + ml)éaﬂg; Z—: }
mzﬂll//
i) {1+ w(uy + ",Ul)IZ;‘(lJr 6?7. + Oﬁl:)}
JE[X]

where =

(g +7&x) 1 — pio&1
Proof: For proof see appendix A-l1I.
6. RELIABILITY INDICES

(57)

(58)

(59)

(60)

In order to analyze reliability indices, we consider setup and breakdown states as absorbing states. By using the same notations as

in the previous section, we can get the following set of equations:

(S en0)n0 = R0+ 4N R0 0 0001

o 0 1 L
— =+ X) + Ahp + P()t,x =/h aP X), n>1
(at o HHa0)+ g al)n( ) plkZ:l. 2 (0,

d n B
(a+,u2 +hp, + aszn(Z) (t) = Ahp, kZ::lak P@ )+ r_[o PO (t, ¥y (X)dx, n>1
The boundary conditions are:
P (10) = 2P (0 + W=D [ R € )1 (X + (N +DO Q1 (), n=1

P 0) = 1P P 0 +a-n[ PO, (9 + 23 a4 Q4 1)
k=1

Taking Laplace transform, we get

(s+4+n0)Q%n (8)~1= 2P * () + A= D)[ " P*§) (x, )2 (¥)dx

> L px® (5,0 + (s + g (9 + g + a1 P*O (s,%) = 2h ZakP*(l)k (s, %)
k=1

Now the boundary conditions yield

n
s+ up + g, + 0 P+ (5) = 2, D 2, P+, (5)+ [P (5,0 (x)dx
k=1

P (50) = 4aP* (8)+ A=) P (5,201 ()dx+ (1+DOQ*r.1 (5)

n+1 n+1

The probability generating functions in the formof Laplace transformation can be written as

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

Madhu Jain, IJECS Volume 3 Issue 12 December, 2014 Page N0.9462-9475

Page 9469



Qn(s,2)= ZQ;(S)Zn P® (s, x,2) = > PO (s, x)z", Pi®(s,0,2) = > P®(s,02" Pi@(s,2)= > P @ (s)z"

n=0 n=0 n=0
Multiplying equations (66)-(65) by suitable powers of z and summing, we get

1
A+S+0—-AX(zg)

Q*(s)=

P (s, x,2) = {%} P @ (s,0,2)

P (s, 7) = {W\,*a—l(s’z)}p;(l) (5.0,2)

as (s, z)+ uo
where
aj(s,z) =s+aj — Ahp — Ahp X(2), =12

* a, + 1+ AX(2)-1—-s-80 *
pn (8] (S,O, Z) — ( 2 T H2 ){ ( ) } Qn (S)
(ay + 15 Nz —W*ay(s,2))—ray (s, 2)W* ay (5, 2)
Let z be the root of equation
x:w*al(s,z){lJr—ral(s’Z) }
as(s,z)+ uo

Now we derive some reliability indices as follows:

(i) The availability of the server under steady state is

A= iQn n i PD @)dx+ i P @)dx

n=0 n=0 n=0
T+ (up + 1)

h 2
1+y(up + rﬂl)Z{lJr % + Oﬂl'}

i=1 i i

(ii) The failure frequency of the server under steady state can be obtained as

f= i{falpn(” ()dx + j ay Pn(z)(x)dx}

n=0|0 0

=lim Z_,l{J.aan(l) (x, z)dx+ Iaz Pn(z) (z)dx}
0 0

(oqup +a)y

= > _ _
T+ yw(uy +ruy) {1+a,+a,}
2 E 6 B

(iii) The mean time to failure is given by

MTTF = j R(t)dt = [R*(s)]s—o
0

=Q*(0)+(1—6’)Q*(0){{

(A= w* (a1)) (g + p12) + ragW™* (e) }
(g + 1) (L—W* (e1)) — rayw* (o)}

7. SENSITIVITY ANALYSIS

n=0

(70)

(71)

(72)

(73)

(74)

(75)
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The graphical presentations of E[R] and E[L] have been done in figures 1-6. For numerical results summarized in tables 1-4,

we set default parameters as

We have plotted the graphs in figs 1-6 for different service time distributions, namely (@) M/E4/1 (b) M/D/1 (¢c) M/y/1.
Figures 1-4 depict the variation in the expected number of customers in the retrial queue E[R] and in the system E[L] for both
homogeneous and heterogeneous failure rates by continuous and discrete curves, respectively, for different values of repair rates
and different sets for balking probabilities, respectively by varying the arrival rate A. The balking parameters (i.e. joining
probability) chosen for different sets are as follows:
Set I: hpy=hp, =0.7, hs1=h4,=0.8, hr;=h,=0.9
Set 1I: hp;=hp; =0.3, hs;=hs,=0.4, hg;=hg,=0.6
Set I11: hpy=hp, =0.1, hs1=hs,=0.3, hg1=hr,=0.4
Set IV: hp;=hp;y =1, hs;=hs,=1, hg;=hg,=1

From figures 1-6, it can be seen that E[R] and E[L] increase first gradually and then significantly with the increase in
arrival rate A. The expected number of customers in the retrial queue E[R] and in the system queue E[L] increase almost linearly
for lower values of arrival rates and then a sharp increment can be found. It can be noticed in figures 1 (a-c) and 2 (a-c) that E[L]
and E[R] both increase with the increment in the failure rates. There is noteworthy effect of repair rates on E[R] and E[L] as can
be seen in figures 3(a-c) and 4(a-c); as we increase the repair rate, the expected number of customers in the retrial queue E[R] and
in the system queue E[L] demonstrate the decreasing trends. A notable increasing effect of joining probabilities on E[R] and E[L]
can be noticed from figures 5 (a-c) and 6 (a-c).

In all figs, we see that E[R] and E[L] are higher for heterogeneous arrival rates in comparison to homogeneous arrival
rates. The increasing (decreasing) pattern of E[R] and E[L] for increasing values of arrival rate, failure rate, repair rate and joining
probabilities tally with physical experiences. For heavy traffic, the effects are more prominent which is same as we expect for the

real time system.

8. CONCLUDING REMARKS

In this work, we have studied balking aspects while predicting the performance of unreliable M*/G/1 queueing systems
with second optional service. By using the supplementary variable method, we have modeled the system as a Markov chain and

obtained stationary queueing and reliability measures of interest.

Batch arrival queueing model with retrials has potential applicability in many real world congestion situations. In our
investigations we have incorporated the server breakdown which is an unavoidable phenomenon for any queueing systems.
Moreover, the optional services and retrial attempts considered can be realized in queueing models while modeling many practical
applications related to computer sciences, communication, production, human- computer interactions and so on. The incorporation
of more realistic assumptions namely (i) bulk arrival (ii) retrial attempts (iii) unreliable server (iv) balking, altogether make our
model more versatile and robust than previous models. The numerical illustrations given provide an insight regarding

computational tractability of the analytical results established for the concerned model.
APPENDIX

A-1: Proof of theorem 1:

Solution of eq. (29) gives

—Jhe, (1-X —
SO (% y,2) =y SO (x0,z)e XV (3 A1)
By using (35) in (29), we get
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5O (x.y.2 = PP (x, 205 ) (A.2)
Similarly fromequations (32) and (40)

—he.. (1— —_—
5@ (y,2) =, PP (2)e 2OV () (A3)
Equations (30) and (33) give
RO (x,y,2) = RO (x,0,2)e XDV B () (A4)
—Ah 1-X —_—
R@ (y,2)=RP (0,2)e et XV g 1 (A5)

Fromequations (37), (A.1) and (A.4), we obtain
—ihg, (1-X —
R® (%, v,2) = g PO (x,2) s * (g, (L— X (2))ye "XV B () (A6)

where I e Xy (y) = 57 (g, (L= X (2))).
0
Fromequations (A.3), (A.4) and (38), we have

—7h 1-X _—
R (y,2) = ;P2 (2)s* (Ahg, - X (2))ye Rt WV g, (A7)
By using equations (28) in (A.7), we get

P (x,2) = PP (0,2)e A Wy (x) (A.8)
A-11: Proof of theorem 2:

Equations (31), (A.7) and (A.8) give

p@ (7) =1 W) Lpw g ) (A.9)
Uy +¢5(2)

Integrating equation (A.8) by parts, we get

pn(l) (2) = {ﬁle(z)}pn(l) (0,2) (A.10)

Again fromequation (A.1) and (A.9), we get

- ~S"(2hg (1- X (2))y}
SO () = {1 w @(Z)} ! ! PO, A1l
(D)= 52) hg (1= X (2)) O .

On integrating equation (A.3) by parts and using equation (A.9), we obtain

5P (2) = az{ e } oS 0 X 00 P (0,2) (A.12)
wm+h @] I, 0-X(2)

Now from equations (A.7) and (A.9), we get

RY (2) = oy " {ihs, (1- X (2))y 1_W*¢1(Z)Hl_ 5 (e, X (Z))y}}Pn(l) (0.2) (A13)

#(2) Ahg, (L= X(2))
D) gr 5" _ w*g(2) | |1-B (g, (0= X (@)} |
RIY (@) = a2 8™{hs, (- X (D) ¢2(Z’H T ax@) | 0D (A.14)

A-111 Proof of theorem 4:

To obtain required probabilities, we use
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10.

ER]

=lim, 4, PW(2),i=12 (A.15)
=lim, ;5" (2),i=12 (A.16)

=lim, 4, RW(2),i=12 (A.17)
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