

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 7 (July 2013), Page No. 2162-2166

Shapna Rani.E, IJECS Volume 2 Issue 7, (July 2013) Page No.2162-2166 Page 2162

An Intrusion Detection System for Multitier Web

Applications Using Double Guard

Shapna Rani.E, G.Sathesh Kumar, Mythili.R , Karthick.R

Assistant Professor M.A.M College of Engineering & Technology, Trichurappalli.

Email ID: shapnaedwin@gmail.com

Assistant Professor M.A.M College of Engineering & Technology, Trichurappalli.

Email ID: gskme83@gmail.com

Assistant Professor Mahendra College of Engineering, Namakkal

Email ID: mythili.infotech@gmail.com

Assistant professor M.A.M College of Engineering and Technology,Trichy

Email ID: karthickkiwi@gmail.com

Abstract: Internet services and applications have become an inextricable part of daily life, enabling communication and the

management of personal information from anywhere. To accommodate this increase in application and data complexity, web

services have moved to a multi tiered design wherein the web server runs the application front-end logic and data are outsourced

to a database or file server. Presenting Double Guard, an Intrusion Detection

System that models the network behavior of user sessions across both the front-end web server and the back-end database. By

monitoring both web and subsequent database requests, it is possible to ferret out attacks that independent IDS would not be able

to identify.

Keyword - Anomaly detection, virtualization, multitier web

application.

1. Introduction

Web delivered services and applications have

increased in both popularity and complexity over a past few

years. Daily tasks, such as travel, and social networking, are

all done via the web. Such services typically employ a web

server front end that runs the application user interface

logic, as well as a back-end server that consists of a database

or file server. Due to their ubiquitous use for personal and/or

corporate data, web services have always been the target of

attacks. These attacks have recently become more diverse,

as attention has shifted from attacking the front end to

exploiting vulnerabilities of the web applications, In order to

corrupt the back-end database system. A plethora of

Intrusion Detection Systems (IDSs) currently examine

network packets individually within both the web server and

the database system. However, there is very little work

being performed on multi tiered Anomaly Detection (AD)

systems that generate models of network behavior for both

web and database network interactions. In such multi tiered

architectures the back-end database server is often protected

behind a firewall while the web servers are remotely

accessible over the Internet. Unfortunately, though they are

protected from direct remote attacks, the back-end systems

are susceptible to attacks that use web requests as a means to

exploit the back end.

To protect multi tiered web services, Intrusion

mailto:shapnaedwin@gmail.com
mailto:gskme83@gmail.com
file:///C:/Users/ambika/Local%20Settings/Temp/mythili.infotech@gmail.com
mailto:karthickkiwi@gmail.com

Shapna Rani.E, IJECS Volume 2 Issue 7, (July 2013) Page No.2162-2166 Page 2163

detection systems have been widely used to detect known

attacks by matching misused traffic patterns or signatures. A

class of IDS that leverages machine learning can also detect

unknown attacks by identifying abnormal network traffic

that deviates from the so-called “normal” behavior

previously profiled during the IDS training phase.

Individually, the web IDS and the database IDS can detect

abnormal network traffic sent to either of them.

Using Double Guard approach, both the front end

and back end transactions can be prevented from attacks.

2. Threat Model and System Architecture

 Setting up our threat model to include our

assumptions and the types of attacks we are aiming to

protect against. We assume that both the web and the

database servers are vulnerable. Attacks are network borne

and come from the web clients; they can launch application-

layer attacks to compromise the web servers they are

connecting to. The attackers can bypass the web server to

directly attack the database server. We assume that the

attacks can neither be detected nor prevented by the current

web server IDS, that attacker may take over the web server

after the attack, and that afterward they can obtain full

control of the web server to launch subsequent attacks. For

example, the attackers could modify the application logic of

the web applications, eavesdrop or hijack other users’ web

requests, or intercept and modify the database queries to

steal sensitive data beyond their privileges.

On the other hand, at the database end, assuming that the

database server will not be completely taken over by the

attackers. Attackers may strike the database server through

the web server or, more directly, by submitting SQL queries,

they may obtain and pollute sensitive data within the

database. These assumptions are reasonable since, in most

cases, the database server is not exposed to the public and is

therefore difficult for attackers to completely take over. We

assume no prior knowledge of the source code or the

application logic of web services deployed on the web

server. In addition, analyze only network traffic that reaches

the web server and database. Assuming that no attack would

occur during the training phase and model building.

2.1 Architecture and Confinement

 In our design, use of lightweight process

containers, referred to as “containers,” as ephemeral,

disposable servers for client sessions. It is possible to

initialize thousands of containers on a single physical

machine, and these virtualized containers can be discarded,

reverted, or quickly reinitialized to serve new sessions. A

single physical web server runs many containers, each one

an exact copy of the original web server. Our approach

dynamically generates new containers and recycles used

ones. As a result, a single physical server can run

continuously and serve all web requests. However, from a

logical perspective, each session is assigned to a dedicated

web server and isolated from other sessions. Since we

initialize each virtualized container using a read-only clean

template, we can guarantee that each session will be served

with a clean web server instance at initialization. Choosing

to separate communications at the session level so that a

single user always deals with the same web server. Sessions

can represent different users to some extent, and we expect

the communication of a single user to go to the same

dedicated web server, thereby allowing us to identify

suspect behavior by both session and user. Detecting

abnormal behavior in a session, treat all traffic within this

session as tainted. If an attacker compromises a vanilla web

server, other sessions’ communications can also be hijacked.

In our system, an attacker can only stay within the web

server containers that he/she is connected to, with no

knowledge of the existence of other session

communications. Ensuring that legitimate sessions will not

be compromised directly by an attacker.

2.2 Building the Normality Model

 This container-based and session-separated web

server architecture not only enhances the security

performances but also provides us with the isolated

information flows that are separated in each container

session. It allows us to identify the mapping between the

web server requests and the subsequent DB queries, and to

utilize such a mapping model to detect abnormal behaviors

on a session/client level. In typical three-tiered web server

architecture, the web server receives HTTP requests from

user clients and then issues SQL queries to the database

server to retrieve and update data. These SQL queries are

causally dependent on the web request hitting the web

Shapna Rani.E, IJECS Volume 2 Issue 7, (July 2013) Page No.2162-2166 Page 2164

server. Prepare model such causal mapping relationships of

all legitimate traffic so as to detect abnormal/attack traffic.

In practice, building such mapping under a classic three-

tier setup is quite difficult. Although the web server can

distinguish sessions from different clients, the SQL queries

are mixed and all from the same web server. It is impossible

for a database server to determine which SQL queries are

the results of which web requests, much less to find out the

relationship between them. Even if we knew the application

logic of the web server and were to build a correct model, it

would be impossible to use such a model to detect attacks

within huge amounts of concurrent real traffic unless we had

a mechanism to identify the pair of the HTTP request and

SQL queries that are causally generated by the HTTP

request. However, within our container-based web servers, it

is a straightforward matter to identify the causal pairs of

web requests and resulting SQL queries in a given session.

Moreover, as traffic can easily be separated by session, it

becomes possible for us to compare and analyze the request

and queries across different sessions. To that end, we put

sensors at both sides of the servers. At the web server, our

sensors are deployed on the host system and cannot be

attacked directly since only the virtualized containers are

exposed to attackers. Our sensors will not be attacked at the

database server either, as we assume that the attacker cannot

completely take control of the database server. In fact, we

assume that our sensors cannot be attacked and can always

capture correct traffic information at both ends.

 The overall architecture of our system is presented

in the figure fig 1.

Database

Server

Host Web

Server

(Dispatcher)

VE 1

VE 2

VE 3

Hardware

Host Operating System

Web

Server 1

Web

Server 2

Web

Server 3

Client 1 Client 2 Client 3
Traffic

Capture

Shapna Rani.E, IJECS Volume 2 Issue 7, (July 2013) Page No.2162-2166 Page 2165

 Figure 1: System Architecture

3. Modeling Deterministic Mapping Patterns

3.1 Deterministic Mapping

This is the most common and perfectly matched

pattern. That is to say that web request rm appears in all traffic with

the SQL queries set Qn. For any session in the testing phase with

the request rm, the absence of a query set Qn matching the request

indicates a possible intrusion. On the other hand, if Qn is present in

the session traffic without the corresponding rm, this may also be

the sign of an intrusion.

3.2 Empty Query Set

In special cases, the SQL query set may be the empty set.

This implies that the web request neither causes nor

generates any database queries. For example, when a web

request for retrieving an image GIF file from the same

webserver is made, a mapping relationship does not exist

because only the web requests are observed. During the

testing phase, we keep these web requests together in the set

EQS.

3.3 No Matched Request

Unmatched queries in a set NMR are kept. During

the testing phase, any query within set NMR is considered

legitimate.

4. Static Model Building Algorithm

Require: Training Data set, Threshold t

Ensure: The Mapping Model for static website

1: for each session separated traffic Ti do

2: Get different HTTP requests r and DB queries q in this

session

3: for each different r do

4: if r is a request to static file then

5: Add r into set EQS

6: else

7: if r is not in set REQ then

8: Add r into REQ

9: Append session ID i to the set ARr with r as the key

10: for each different q do

11: if q is not in set SQL then

12: Add q into SQL

13: Append session ID i to the set AQq with q as the key

14: for each distinct HTTP request r in REQ do

15: for each distinct DB query q in SQL do

16: Compare the set ARr with the set AQq

17: if ARr = AQq and Cardinality (ARr)> t then

18: Found a Deterministic mapping from r to q

19: Add q into mapping model set MSr of r

20: Mark q in set SQL

21: else

22: Need more training sessions

23: return False

24: for each DB query q in SQL do

25: if q is not marked then

26: Add q into set NMR

27: for each HTTP request r in REQ do

28: if r has no deterministic mapping model then

29: Add r into set EQS

30: return true

5. Conclusion

We presented an intrusion detection system that builds

models of normal behavior for multi tiered web applications

from both front-end web (HTTP) requests and back-end

database (SQL) queries. Unlike previous approaches that

correlated or summarized alerts generated by independent

IDSs, Double-Guard forms container-based IDS with

multiple input streams to produce alerts. We have deployed

using Apache Web server, a blog application, and a MySQL

back end, Double-Guard was able to identify a wide range

of attacks with minimal false positives.

6. References

1. Anley. (2002) “Advanced Sql Injection in Sql

Server Applications,” technical report, Next

Generation Security Software, Ltd.,

2. Bai K Wang H and Liu P (2005). “Towards

Database Firewalls,” Proc. Ann. IFIP WG 11.3

Working Conf. Data and Applications Security

(DBSec ’05).

3. Barry B.I.A. and H.A. Chan (2009). “Syntax, and

Semantics-Based Signature Database for Hybrid

Shapna Rani.E, IJECS Volume 2 Issue 7, (July 2013) Page No.2162-2166 Page 2166

Intrusion Detection Systems,” Security and Comm.

Networks, vol. 2, no. 6, pp. 457-475.

4. Christodorescu M and Jha S (2003) “Static

Analysis of Executables to Detect Malicious

Patterns,” Proc. Conf. USENIX Security Symp.

5. Cova M, Balzarotti D, Felmetsger V, and Vigna G

(2007) “Swaddler:An Approach for the Anomaly-

Based Detection of State Violations in Web

Applications,” Proc. Int’l Symp. Recent Advances

in Intrusion Detection (RAID ’07).

6. Debar H. Dacier M. and Wespi A. (1999)

“Towards a Taxonomy of Intrusion-Detection

Systems,” Computer Networks, vol. 31, no. 9, pp.

805-822.

