

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 7 (July 2013), Page No. 2139-2144

Abu Sadat Mohammaed Yasin IJECS Volume 2 Issue 7, (July 2013) Page No.2139-2144 Page 2139

Devise, Extend and Upgraded Algorithm of Gene

Sequence for Local Alignment

Abu Sadat Mohammaed Yasin
1
, Md. Majharul Haque

2
, Kollol Naha

3
, Md. Shakil Ahamed Shohag

4

1Shajalal University of Science & Technology, Department of Computer Science & Engineering,

Sylhet, Bangladesh

abusadatyasin@gmail.com

2University of Dhaka, Department of Computer Science & Engineering,

Dhaka, Bangladesh

mazharul_13@yahoo.com

3Shajalal University of Science & Technology, Department of Computer Science & Engineering,

Sylhet, Bangladesh

kallolnaha@gmail.com

4University of Development Alternative, Department of Computer Science & Engineering,

Dhaka, Bangladesh

shakilshohag@email.com

Abstract: Finding similar regions from two strings or nucleotides or protein sequences is very much desirable for determining the

functional similarity between them. In the ground of bioinformatics, for determining analogous constituency between two sequences,

sequence-alignment can be used, which is the way of arranging sequences. This can also be helpful for non-biological field such as natural

language processing or financial data. Finding out the larger sequence from the dissimilar sequences those are suspected to contain regions

of similarity motifs within their long sequence context, local-alignment (maximum length exact matching) is very useful which mostly

works on identifying the best pair of regions. In this research work an innovative method is proposed for searching bio-sequences/gene-

sequences for the local alignment. This paper also provides an evaluation of the proposed algorithm and turns a black and white

comparison with one of the popular existing methods and a modified version of the existing method. The evaluation result shows that the

existing method is very time and space/memory consuming where the promising approach of projected technique is to seek out the identical

sequences by taking less computational time and using less memory space. Therefore, we have faith that the new era of searching similar

region from sequences is going to be raised for this proposed innovative method.

Keywords: Functional similarity, analogous constituency, sequence-alignment, local-alignment, gene-sequence.

1. Introduction

Local-alignment [7], [8] discovers the exact matching between

two Gene-sequences [1]-[4]. Generally Smith-Waterman

algorithm [5], [9] is used for local-alignment [7], [8] searching.

Usually Gene-sequences are very large and when the sequences

are over sized they take much long time and memory to find

out the result/search or result/matching part [4]. The ultimate

goal of our paper is to reduce both the time and space/memory

complexity [5], [6] of the Smith-Waterman Algorithm [5], [9].

Md. Shihabuddin Sadi et al [12] in 2009 worked on Smith-

Waterman algorithm [5], [9] to reduce time complexity, where

they proposed a new algorithm and they claimed successes in

terms of time but not in space/memory. In this paper, main

target is to reduce time (make much faster than the modified

algorithm [12]) and space/memory both so that the searching

technique can be more efficient and fast.

2. Smith-Waterman Algorithm [5], [9]

This algorithm works for local-alignment [7], [8]. For each cell

of the matrix computation it has to check the upper position,

left position, and upper-left diagonal position. So the

computation depends on previous three cells. It has to compute

whole matrix of dimension (M, N) for all time and its best,

average, and worst case time complexity [5], [6] are O (MN).

So, it is very time consuming algorithm. Its space/memory

complexity [5], [6] is also very high, O (MN). Here is the

description of Smith-Waterman Algorithm [5], [9] with

examples depicted in table 1:

(i) If two sequences AACCTATAGCT & GCGATATA

with length of M & N, declare a matrix with (M+1 x

N+1) dimensions and assigns 0 to the first row and

column.

(ii) Start searching from cell (2, 2) position of the matrix

for char. by char. matching.

(iii) If a match found than add a bonus point (+1) with its

upper left diagonal positions’ value.

mailto:shakilshohag@email.com

Abu Sadat Mohammaed Yasin IJECS Volume 2 Issue 7, (July 2013) Page No.2139-2144 Page 2140

(iv) If no match is found than find out the max value from

its’ upper, left and upper left diagonal position and

subtract a penalty (1).

(v) In this way compute the whole matrix and store, then

update the max value and from the max value find out

the maximum matches found or obtained. Keep track

of the direction from which a score was derived.

(vi) The result of this example is “TATA”.

Table 1: The Matrix calculations for Smith-Waterman

Algorithm

3. Background

In the year 2009 Md. Shihabuddin Sadi et al [12] worked on

the Smith-Waterman algorithm [5], [9] and they proposed an

upgraded Smith-Waterman algorithm with less time complexity

[5], [6].

According to the previous example here the procedure of their

upgraded algorithm [12] is described below:

(i) If a mismatch in any position of the table is found, put

a zero in that position and proceed to the next

horizontal position of the table. If there is no horizontal

position remains, proceed to the first position of the

next row. No comparison will be done if a position is

filled previously.

(ii) If a match in any position of the table is found, put a +1

value in that position and define it as a root and

proceed to the next diagonal position of the table. If

another match is discovered, the score will be added

with the last diagonal position’s score. By this way, the

process will be continued until getting a mismatch.

(iii) When a mismatch is observed or if the table ended

while continuing diagonal comparison, set the last non-

zero value as maximum number and go back to the

root.

(iv) If the maximum number is L, select L-1 rows and L-1

columns from the both end. No comparison will be

started from these selected areas. Only the diagonal

comparison value will be performed in these areas.

(v) After going back to the root, the next horizontal

position of root will be the new start position.

(vi) If another maximum number is found out by this way,

the greater maximum number will be taken.

(vii) After finishing traversing by this way, the last

maximum value and its’ diagonal chain are picked to

the root. This will be the best locally aligned sequence

between two sequences.

(viii) The Result of this example is “TATA”.

The full process is portrayed in the table 2.

Table 2: The matrix calculations for the upgraded algorithm

According to this algorithm its’ best case complexity [5], [6] is

Ω (N), average case complexity is O(N(M+1)/2), and worst

case complexity is O(MN). Its space or memory complexity is

O(MN).

4. Proposed Model

An innovative algorithm is proposed here which is much faster

in practically from both the Smith-Waterman algorithm [5], [9]

and the upgraded algorithm [12]. The space complexity [5], [6]

is also reduced from O(MN) to O(max(M,N)). Here is our

proposed technique with the same example:

a) At first the matrix starts for matches from the first

diagonal starting from position (1, 1), than advances

towards to its diagonal way (the colored marked

diagonal is shown in table 3).

Table 3: Working diagonal path of the matrix

b) If a mismatch in any diagonal position of the table is

noticed, put a zero in that position and proceed to the

next position of the diagonal of the table. If there is no

diagonal position remains, than starts for next one from

Abu Sadat Mohammaed Yasin IJECS Volume 2 Issue 7, (July 2013) Page No.2139-2144 Page 2141

its upper side diagonal way and second from its lower

side diagonal way and again third from its upper side

diagonal way and forth from its lower side diagonal

way and so on. In the table 4, it is exposed that only

colored marked numbers indicate the sequences of

diagonals need to be checked.

Table 4: The corresponding numbers indicate the way to check

diagonal

c. If a match in any position of the table is found, put +1

value in that position and proceed to the next diagonal

position of the table. If another match is occurred, the

score will be added with the previous diagonal

position’s score. By this way, the process will be

continued until getting the end of the diagonal as in

table 5. If a mismatch is raised after a score than put

zero (0) in this position and start counting from 1 for

finding next match.

Table 5: Scoring or counting matches

d) Last non-zero maximum value is traced as the

maximum value of the matches’ string.

e) If the maximum number is L, it will not access the last

L-1 length indexes of diagonal and L-1 indexes of

columns. No comparison will be started from these

selected areas. Only the diagonal comparison value

will enter in these areas if its immediate previous

position has a non-zero value (colored shown in table

6).

Table 6: Reducing computation

f. If another maximum number is exists by this way, the

greater maximum number will be taken.

g. After traversing by this way, the last maximum value

and its diagonal chain are picked. This will be the best

locally aligned sequence between two sequences.

h. Keep track of the direction from which a score was

derived.

i. From this table it is determined that the maximum

length of 4 and the substring is “TATA”. Here it works

for local-alignment [7], [8]. Table 7 shows the

complete computations. The colored cells those are

indicated in table 7 do not need any comparison or

computation.

Table 7: Complete table after full computation

5. Computational Complexity [5], [6] of

Proposed Algorithm, Smith Waterman

Algorithm [5], [9] and Modified Algorithm

[12]

If the length of the two sequences are M and N, (M >=N)

Table 8: Complexity analysis in theoretically or

mathematically

Computationa

l Time

Complexity

Our Proposed

Modified

Smith-

waterman

Algorithm

Modified

Smith-

waterman

Algorithm

[12]

Smith

Waterman

Algorithm [5]

[9]

Best Case: Ω(N) Ω(N) O(MN)

Worst Case: O(MN) O(MN) O(MN)

Average Case: (N (M+1)/2) (N (M+1)/2) O(MN)

5.1 Calculation of Average Case

Average case

=N*1/(MN-N+1)+(N+1)*1/(MN-N+1)+(N+2)*1/(MN-

N+1)+(N+3)*1/(MN-N+1)+…………+(MN)*1/(MN-N+1)

Abu Sadat Mohammaed Yasin IJECS Volume 2 Issue 7, (July 2013) Page No.2139-2144 Page 2142

=1/ (MN-N+1) (N+(N+1)+(N+2)+(N+3)+…+MN)

=1/ (MN-N+1) * (MN-N+1) * (N (M+1)/2)

= (N (M+1)/2)

5.2 Space Complexity

In our method, about a matrix is thought but in practical

code/program it is not needed to create matrix or two-

dimensional array. Always compute value from the diagonal of

the matrix and each cell value depend on the current diagonal’

previous cell and current cell doesn’t need any other diagonals’

cell value. So, here only requires enough space to store the

diagonal it is currently working on and which can be done

using a single array. Assuming the longer sequence has length

N, the space complexity [5], [6] of the proposed algorithm is

O(N).

Thus, space complexity is reduced [5], [6] from O (MN) to O

(N).

Table 9: Space or Memory complexity table

 Our Proposed

Modified

Smith

Waterman

Algorithm

Modified

Smith-

waterman

Algorithm

[12]

Original

Smith

Waterman

Algorithm [5]

[9]

Space

complexity

O(N) O(MN) O(MN)

6. Result Analysis

In the following table 10 shows how many computations take

these three algorithms. This table shows only three small

examples’ computations data.

Table 10: No of computations needed for some small examples

Examples Our

Modified

Algorithm

Modified

Algorithm[

12]

Smith-

Waterman

Algorithm[5][9

]

AACCTA

TAGCT

and

GCGATA

TA

45 55 88

ACGTGC

ATT and

CTGTGC

CAT

41 44 81

ATGCAC

TGC and

ATGC

10 10 36

6.1 Practically Time Complexity Analysis and Graph

For practical calculation some raw data is taken (example:

agttagtggagatcacacgacgtgctaggacttacatctgccctaggctgcagactacca

ttagagagacgctactgccaacattataggcactgatgtaactcatggtacatccgtcgct

gagcgccattttgttacgtcacctggctggaacgtcgtccacaggaaacatcggcccacg

ccggtactccatacgcttgaccacatacctgcaatcgccgagggccgggtcatggaaaa

aacacgagttgtaattgcttatatagtaccgcagcgaggtactgtcatccagggcatttagg

gcggcgcctgagagagggctgcagcgtccggtgggtcgcgctagtggcgctatctctc

cgttggtgctttgatgacattgaattaggcctggcctggagcagttgaattgcatgaattgg

catgtcgttacaggacacaaggccgtcagaagtcccttacttggtgtagattaccgcatta

actgtatggatttctgacgttcgtttctccatatcgacgcggctcagtgtctgggtcgattctc

cctccaaagccgtagcctttaaaccaaccacctggatctgcgttcctgcgtgc).

As like gene-sequence [4], we apply those data on the proposed

modified algorithms, upgraded algorithm [12] and the original

Smith-Waterman algorithm [5], [9] Visual C++ is used for

implementation of these three algorithms. After applying, it is

found that in average case and best case proposed algorithm

gives better performance. But for worst-case (where no match

of any character is found) proposed algorithm give a little

lower performance than upgraded algorithm [12]. From the

implementation of these three algorithms, collected data is

presented below with tabular-form and graph.

6.2 Best Case Time Analysis (Practically)

Table 11: Best case time data analysis

Input type

(1000 inputs

with length

(N) character)

Smith

Waterman

Algorithm

[5] [9]

(Time ms)

Modified

Smith-

waterman

Algorithm[12]

(Time ms)

Our

Proposed

Modified

Smith-

waterman

Algorithm

(Time ms)

N=100 250 31 31

N=200 812 62 62

N=300 1953 109 109

N=400 3406 140 140

N=500 5265 156 156

N=600 7564 203 203

N=700 10312 234 218

N=800 13218 265 265

N=900 16562 312 281

Figure 1: Best case time curve

6.3 Average Case Time Analysis (Practically)

Table 12: Average case time data analysis

Input type

(1000 inputs

with n length

character)

Smith

Waterman

Algorithm [5]

[9]

(Time ms)

Modified

Smith-

waterman

Algorithm[12]

(Time ms)

Our

Proposed

Algorithm

(Time ms)

100 750 265 187

200 3062 953 671

300 6718 2156 1375

Abu Sadat Mohammaed Yasin IJECS Volume 2 Issue 7, (July 2013) Page No.2139-2144 Page 2143

400 11968 4000 2421

500 18484 6156 3828

600 26406 8921 5468

700 35609 12093 7453

800 46500 15703 9765

900 58641 19890 12390

Figure 2: Average case time curve

6.4 Worst Case Time Analysis (Practically)

Table 13: Worst case time data analysis

Input type

(1000

inputs with

n length

character)

Smith

Waterman

Algorithm

[5] [9]

(Time ms)

Modified

Smith-

waterman

Algorithm[12]

(Time ms)

Our

Proposed

Algorithm

(Time ms)

100 765 93 140

200 3078 406 453

300 7093 793 937

400 12812 1359 1593

500 19765 2058 2406

600 28343 2937 3453

700 38421 3859 4718

800 50125 5156 6031

900 63656 6515 7500

Figure 3: Worst case time curve

According to these collected data and analysis, it is apparently

observed that the proposed algorithm performs much better and

much faster than both Smith-Waterman algorithm [5], [9] and

upgraded algorithm [12] to find out or comparing a gene-

sequence from a genome database.

6.5 Practically Space Complexity Analysis and Graph

For practical calculation the space/memory complexity is done

by the topic “complexity of algorithm” [5], [6]. It is clear that

in average case, worst-case (that means number of similarities

is so small) and best case proposed algorithm gives better

performance for memory.

Table 14: Memory taken by these three algorithms

Input type

(1000 inputs

with n

length

character)

Smith

Waterman

Algorithm [5]

[9]

(Space in Mb)

Modified

Smith-

waterman

Algorithm[12]

(Space in Mb)

Our

Proposed

Algorithm

(Space in

Mb)

100 38.204193 38.204193 0.476456

200 152.626038 152.626038 0.952911

300 343.265533 343.265533 1.429367

400 610.122681 610.122681 1.905823

500 953.197479 953.197479 2.382278

600 1372.489929 1372.489929 2.858734

700 1868.000031 1868.000031 3.335190

800 2439.727783 2439.727783 3.811646

900 3087.673187 3087.673187 4.288101

Figure 4: Full curve of space or memory complexity of

these three algorithms

Figure 5: Partial curve of space or memory complexity of

these three algorithms (for better understanding)

7. Conclusion

In bio-informatics there are a huge number of papers for

decreasing the time and space complexity but increasing the

accuracy of sequences matching and reducing computational

complexity is still a great challenge; because existing

Abu Sadat Mohammaed Yasin IJECS Volume 2 Issue 7, (July 2013) Page No.2139-2144 Page 2144

algorithms also give better performance, such as heuristic tool

like FASTA (a protein sequence alignment software package)

partially uses the Smith-Waterman Algorithm. The

computational complexity of Smith-Waterman Algorithm for

local-alignment sequence matching is relatively high as (MN).

But our proposed algorithm reduces that computational

complexity to (N (M+1)/2). The space complexity of Smith-

Waterman Algorithm is O (MN) but our proposed algorithm

reduces that space complexity to (N). The major analysis of

this research based on primary structure. But we believe that

anyone can also get help for further research on secondary and

tertiary structure for deriving new procedure besides using this

proposed algorithm in real life.

References

[1] S. C. Rastogi, Namita Mendiratta, Parag Rastogi, S.C.

Rastogi, Jeremy Strong, “Bioinformatics-methods and

Applications”, Paperback, Prentice-Hall Of India Pvt.Ltd,

ISBN-10: 81-203-2582-6 / ISBN-13: 978-81-203-2582-1,

2004.

[2] David W. Mount, “Bioinformatics: Sequence & Genome

analysis”, 2
nd

 Ed. Cold Spring Harbor Laboratory

Press,U.S, 2004.

[3] Andreas D. Baxevanis and B. F. Francis Ouellette,

“Bioinformatics: A Practical Guide to the Analysis of

Genes and Proteins”, 2
nd

 Ed. John Wiley & Sons Inc,

2001.

[4] Dan E. Krane, Michael L. Raymer, “Fundamental

Concepts of Bioinformatics”, Publisher: Benjamin

Cummings, Bookseller: HPB-Ohio, Columbus, OH,

U.S.A., ISBN: 0-8053-4633-3, 2002.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, Clifford Stein, Introduction to Algorithms, 2nd

Ed. MIT Press, 2001.

[6] Seymour Lipschutz, “Schaum's Outline of Theory and

Problems of Data Structures”, Mcgraw-Hill, 1986.

[7] Jelena Prokić, Martijn Wieling and John Nerbonne,

“Multiple sequence alignments in linguistics,”

Proceedings of the EACL 2009 Workshop on Language

Technology and Resources for Cultural Heritage, Social

Sciences, Humanities, and Education, pp. 18-25, 2009.

[8] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J.

Lipman, “Basic local alignment search tool,” Journal of

Molecular Biology, vol. 215, no. 3, pp. 403-410, 1990.

[9] T. F. Smith and M. S. Waterman, "Identification of

Common Molecular Subsequences," Journal of Molecular

Biology, vol. 147, pp. 195-197, 1981.

[10] Hong Zhou, Yufang Wang and Xiao Zeng, “Fast and

Complete Search of siRNA Off-Target Sequences,” Saint

Joseph College, West Hartford, CT, USA. University of

Southern Mississippi, Hattiesburg, MS, USA. Superarray

Bioscience Corporation, Frederick, MD, USA, 2006.

[11] Kevin Greenan, “Method-Level Code Clone Detection on

Transformed Abstract Syntax Trees Using Sequence

Matching Algorithms,” Department of Computer Science,

University of California Santa Cruz, 2005. [Online]

Available:

http://users.soe.ucsc.edu/~ejw/courses/290gw05/greenan-

report.pdf (Accessed: May 31, 2013)

[12] Md. Shihabuddin Sadi, Abu Zafar Mohammad Sami,

Imtiaz Uddin Ahmed, A. B. M. Ruhunnabi and

Nirmalendu Das, “Bioinformatics: Implementation of a

proposed upgraded Smith-Waterman Algorithm for local-

alignment”, Proceedings of the 6th Annual IEEE

conference on Computational Intelligence in

Bioinformatics and Computational Biology, pp. 87-91,

2009.

http://www.isbns.ws/author/S_C_Rastogi
http://www.isbns.ws/author/Namita_Mendiratta
http://www.isbns.ws/author/Parag_Rastogi
http://www.isbns.ws/author/S_C_Rastogi
http://www.isbns.ws/author/S_C_Rastogi
http://www.isbns.ws/author/Jeremy_Strong
http://www.abebooks.com/servlet/BookDetailsPL?bi=9233927249&searchurl=kn%3DBioinformatics%3A%2Ba%2Bpractical%2Bguide%2Bto%2Bthe%2Banalysis%2Bof%2Bgenes%2Band%2Bproteins%2Bby%2BAndreas%2BD.%2BBaxevanis%2C%2BB.%26sts%3Dt%26x%3D0%26y%3D0
http://www.abebooks.com/servlet/BookDetailsPL?bi=9233927249&searchurl=kn%3DBioinformatics%3A%2Ba%2Bpractical%2Bguide%2Bto%2Bthe%2Banalysis%2Bof%2Bgenes%2Band%2Bproteins%2Bby%2BAndreas%2BD.%2BBaxevanis%2C%2BB.%26sts%3Dt%26x%3D0%26y%3D0
http://www.abebooks.com/servlet/BookDetailsPL?bi=9859048517&searchurl=kn%3DFundamental%2Bconcepts%2Bof%2BBioinformatics%2Bby%2BDan%2BE.%2BKrane%2Band%2BMichael%2BL.%2BRaymer%26sts%3Dt%26x%3D0%26y%3D0
http://www.abebooks.com/servlet/BookDetailsPL?bi=9859048517&searchurl=kn%3DFundamental%2Bconcepts%2Bof%2BBioinformatics%2Bby%2BDan%2BE.%2BKrane%2Band%2BMichael%2BL.%2BRaymer%26sts%3Dt%26x%3D0%26y%3D0
http://www.abebooks.com/servlet/BookDetailsPL?bi=9859048517&tab=1&searchurl=kn%3DFundamental%2Bconcepts%2Bof%2BBioinformatics%2Bby%2BDan%2BE.%2BKrane%2Band%2BMichael%2BL.%2BRaymer%26sts%3Dt%26x%3D0%26y%3D0
http://www.abebooks.com/products/isbn/9780805346336/9859048517
http://www.abebooks.com/servlet/BookDetailsPL?bi=9484668982&searchurl=kn%3DTheory%2Band%2Bproblems%2Bof%2BData%2BStructure%2Bby%2BSeymour%2BLipschutz%26sts%3Dt%26x%3D0%26y%3D0
http://www.abebooks.com/servlet/BookDetailsPL?bi=9484668982&searchurl=kn%3DTheory%2Band%2Bproblems%2Bof%2BData%2BStructure%2Bby%2BSeymour%2BLipschutz%26sts%3Dt%26x%3D0%26y%3D0
http://www.martijnwieling.nl/files/Prokic-Wieling-Nerbonne-2009.pdf

