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Abstract: Finding similar regions from two strings or nucleotides or protein sequences is very much desirable for determining the 

functional similarity between them. In the ground of bioinformatics, for determining analogous constituency between two sequences, 

sequence-alignment can be used, which is the way of arranging sequences. This can also be helpful for non-biological field such as natural 

language processing or financial data. Finding out the larger sequence from the dissimilar sequences those are suspected to contain regions 

of similarity motifs within their long sequence context, local-alignment (maximum length exact matching) is very useful which mostly 

works on identifying the best pair of regions. In this research work an innovative method is proposed for searching bio-sequences/gene-

sequences for the local alignment. This paper also provides an evaluation of the proposed algorithm and turns a black and white 

comparison with one of the popular existing methods and a modified version of the existing method. The evaluation result shows that the 

existing method is very time and space/memory consuming where the promising approach of projected technique is to seek out the identical 

sequences by taking less computational time and using less memory space. Therefore, we have faith that the new era of searching similar 

region from sequences is going to be raised for this proposed innovative method. 
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1. Introduction 

Local-alignment [7], [8] discovers the exact matching between 

two Gene-sequences [1]-[4]. Generally Smith-Waterman 

algorithm [5], [9] is used for local-alignment [7], [8] searching. 

Usually Gene-sequences are very large and when the sequences 

are over sized they take much long time and memory to find 

out the result/search or result/matching part [4]. The ultimate 

goal of our paper is to reduce both the time and space/memory 

complexity [5], [6] of the Smith-Waterman Algorithm [5], [9]. 

Md. Shihabuddin Sadi et al [12] in 2009 worked on Smith-

Waterman algorithm [5], [9] to reduce time complexity, where 

they proposed a new algorithm and they claimed successes in 

terms of time but not in space/memory. In this paper, main 

target is to reduce time (make much faster than the modified 

algorithm [12]) and space/memory both so that the searching 

technique can be more efficient and fast. 

2. Smith-Waterman Algorithm [5], [9] 

This algorithm works for local-alignment [7], [8]. For each cell 

of the matrix computation it has to check the upper position, 

left position, and upper-left diagonal position. So the 

computation depends on previous three cells. It has to compute 

whole matrix of dimension (M, N) for all time and its best, 

average, and worst case time complexity [5], [6] are O (MN). 

So, it is very time consuming algorithm. Its space/memory 

complexity [5], [6] is also very high, O (MN). Here is the 

description of Smith-Waterman Algorithm [5], [9] with 

examples depicted in table 1: 

(i) If two sequences AACCTATAGCT & GCGATATA 

with length of M & N, declare a matrix with (M+1 x 

N+1) dimensions and assigns 0 to the first row and 

column. 

(ii) Start searching from cell (2, 2) position of the matrix 

for char. by char. matching. 

(iii) If a match found than add a bonus point (+1) with its 

upper left diagonal positions’ value. 
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(iv) If no match is found than find out the max value from 

its’ upper, left and upper left diagonal position and 

subtract a penalty (1). 

(v) In this way compute the whole matrix and store, then 

update the max value and from the max value find out 

the maximum matches found or obtained. Keep track 

of the direction from which a score was derived. 

(vi) The result of this example is “TATA”. 

Table 1: The Matrix calculations for Smith-Waterman 

Algorithm 

 

3. Background 

In the year 2009 Md. Shihabuddin Sadi et al [12] worked on 

the Smith-Waterman algorithm [5], [9] and they proposed an 

upgraded Smith-Waterman algorithm with less time complexity 

[5], [6]. 

According to the previous example here the procedure of their 

upgraded algorithm [12] is described below: 

(i) If a mismatch in any position of the table is found, put 

a zero in that position and proceed to the next 

horizontal position of the table. If there is no horizontal 

position remains, proceed to the first position of the 

next row. No comparison will be done if a position is 

filled previously. 

(ii) If a match in any position of the table is found, put a +1 

value in that position and define it as a root and 

proceed to the next diagonal position of the table. If 

another match is discovered, the score will be added 

with the last diagonal position’s score. By this way, the 

process will be continued until getting a mismatch. 

(iii) When a mismatch is observed or if the table ended 

while continuing diagonal comparison, set the last non-

zero value as maximum number and go back to the 

root. 

(iv) If the maximum number is L, select L-1 rows and L-1 

columns from the both end. No comparison will be 

started from these selected areas. Only the diagonal 

comparison value will be performed in these areas. 

(v) After going back to the root, the next horizontal 

position of root will be the new start position. 

(vi) If another maximum number is found out by this way, 

the greater maximum number will be taken. 

(vii) After finishing traversing by this way, the last 

maximum value and its’ diagonal chain are picked to 

the root. This will be the best locally aligned sequence 

between two sequences. 

(viii) The Result of this example is “TATA”. 

The full process is portrayed in the table 2. 

Table 2: The matrix calculations for the upgraded algorithm 

 
According to this algorithm its’ best case complexity [5], [6] is 

Ω (N), average case complexity is O(N(M+1)/2), and worst 

case complexity is O(MN). Its space or memory complexity is 

O(MN). 

4. Proposed Model 

An innovative algorithm is proposed here which is much faster 

in practically from both the Smith-Waterman algorithm [5], [9] 

and the upgraded algorithm [12]. The space complexity [5], [6] 

is also reduced from O(MN) to O(max(M,N)). Here is our 

proposed technique with the same example: 

a) At first the matrix starts for matches from the first 

diagonal starting from position (1, 1), than advances 

towards to its diagonal way (the colored marked 

diagonal is shown in table 3). 

Table 3: Working diagonal path of the matrix 

 
 

b) If a mismatch in any diagonal position of the table is 

noticed, put a zero in that position and proceed to the 

next position of the diagonal of the table. If there is no 

diagonal position remains, than starts for next one from 
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its upper side diagonal way and second from its lower 

side diagonal way and again third from its upper side 

diagonal way and forth from its lower side diagonal 

way and so on. In the table 4, it is exposed that only 

colored marked numbers indicate the sequences of 

diagonals need to be checked. 

Table 4: The corresponding numbers indicate the way to check 

diagonal 

 
c. If a match in any position of the table is found, put +1 

value in that position and proceed to the next diagonal 

position of the table. If another match is occurred, the 

score will be added with the previous diagonal 

position’s score. By this way, the process will be 

continued until getting the end of the diagonal as in 

table 5. If a mismatch is raised after a score than put 

zero (0) in this position and start counting from 1 for 

finding next match. 

Table 5: Scoring or counting matches 

 
d) Last non-zero maximum value is traced as the 

maximum value of the matches’ string. 

e) If the maximum number is L, it will not access the last 

L-1 length indexes of diagonal and L-1 indexes of 

columns. No comparison will be started from these 

selected areas. Only the diagonal comparison value 

will enter in these areas if its immediate previous 

position has a non-zero value (colored shown in table 

6). 

 

 

 

 

Table 6: Reducing computation 

 

f. If another maximum number is exists by this way, the 

greater maximum number will be taken. 

g. After traversing by this way, the last maximum value 

and its diagonal chain are picked. This will be the best 

locally aligned sequence between two sequences. 

h. Keep track of the direction from which a score was 

derived. 

i. From this table it is determined that the maximum 

length of 4 and the substring is “TATA”. Here it works 

for local-alignment [7], [8]. Table 7 shows the 

complete computations. The colored cells those are 

indicated in table 7 do not need any comparison or 

computation. 

Table 7: Complete table after full computation 

 
 

5. Computational Complexity [5], [6] of 

Proposed Algorithm, Smith Waterman 

Algorithm [5], [9] and Modified Algorithm 

[12] 

If the length of the two sequences are M and N, (M >=N) 

Table 8: Complexity analysis in theoretically or 

mathematically 

Computationa

l Time 

Complexity 

Our Proposed 

Modified 

Smith-

waterman 

Algorithm 

Modified 

Smith-

waterman 

Algorithm 

[12] 

Smith 

Waterman 

Algorithm [5] 

[9] 

Best Case: Ω(N) Ω(N) O(MN) 

Worst Case: O(MN) O(MN) O(MN) 

Average Case: (N (M+1)/2) (N (M+1)/2) O(MN) 

 

5.1 Calculation of Average Case 

Average case 

=N*1/(MN-N+1)+(N+1)*1/(MN-N+1)+(N+2)*1/(MN-

N+1)+(N+3)*1/(MN-N+1)+…………+(MN)*1/(MN-N+1) 
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=1/ (MN-N+1) (N+(N+1)+(N+2)+(N+3)+…+MN) 

=1/ (MN-N+1) * (MN-N+1) * (N (M+1)/2) 

= (N (M+1)/2) 

5.2 Space Complexity 

In our method, about a matrix is thought but in practical 

code/program it is not needed to create matrix or two-

dimensional array. Always compute value from the diagonal of 

the matrix and each cell value depend on the current diagonal’ 

previous cell and current cell doesn’t need any other diagonals’ 

cell value. So, here only requires enough space to store the 

diagonal it is currently working on and which can be done 

using a single array. Assuming the longer sequence has length 

N, the space complexity [5], [6] of the proposed algorithm is 

O(N). 

Thus, space complexity is reduced [5], [6] from O (MN) to O 

(N). 

Table 9: Space or Memory complexity table 

 Our Proposed 

Modified 

Smith 

Waterman 

Algorithm 

Modified 

Smith-

waterman 

Algorithm 

[12] 

Original 

Smith 

Waterman 

Algorithm [5] 

[9] 

Space 

complexity 

O(N) O(MN) O(MN) 

6. Result Analysis 

In the following table 10 shows how many computations take 

these three algorithms. This table shows only three small 

examples’ computations data. 

Table 10: No of computations needed for some small examples 

Examples Our 

Modified 

Algorithm 

Modified 

Algorithm[

12] 

Smith-

Waterman 

Algorithm[5][9

] 

AACCTA

TAGCT 

and 

GCGATA

TA 

45 55 88 

ACGTGC

ATT and 

CTGTGC

CAT 

41 44 81 

ATGCAC

TGC and 

ATGC 

10 10 36 

6.1 Practically Time Complexity Analysis and Graph 

For practical calculation some raw data is taken (example: 

agttagtggagatcacacgacgtgctaggacttacatctgccctaggctgcagactacca

ttagagagacgctactgccaacattataggcactgatgtaactcatggtacatccgtcgct

gagcgccattttgttacgtcacctggctggaacgtcgtccacaggaaacatcggcccacg

ccggtactccatacgcttgaccacatacctgcaatcgccgagggccgggtcatggaaaa

aacacgagttgtaattgcttatatagtaccgcagcgaggtactgtcatccagggcatttagg

gcggcgcctgagagagggctgcagcgtccggtgggtcgcgctagtggcgctatctctc

cgttggtgctttgatgacattgaattaggcctggcctggagcagttgaattgcatgaattgg

catgtcgttacaggacacaaggccgtcagaagtcccttacttggtgtagattaccgcatta

actgtatggatttctgacgttcgtttctccatatcgacgcggctcagtgtctgggtcgattctc

cctccaaagccgtagcctttaaaccaaccacctggatctgcgttcctgcgtgc). 

As like gene-sequence [4], we apply those data on the proposed 

modified algorithms, upgraded algorithm [12] and the original 

Smith-Waterman algorithm [5], [9] Visual C++ is used for 

implementation of these three algorithms. After applying, it is 

found that in average case and best case proposed algorithm 

gives better performance. But for worst-case (where no match 

of any character is found) proposed algorithm give a little 

lower performance than upgraded algorithm [12]. From the 

implementation of these three algorithms, collected data is 

presented below with tabular-form and graph. 

6.2 Best Case Time Analysis (Practically) 

Table 11: Best case time data analysis 

Input type 

(1000 inputs 

with length 

(N) character) 

Smith 

Waterman 

Algorithm 

[5] [9] 

(Time ms) 

Modified 

Smith-

waterman 

Algorithm[12] 

(Time ms) 

Our 

Proposed 

Modified 

Smith-

waterman 

Algorithm 

(Time ms) 

N=100 250 31 31 

N=200 812 62 62 

N=300 1953 109 109 

N=400 3406 140 140 

N=500 5265 156 156 

N=600 7564 203 203 

N=700 10312 234 218 

N=800 13218 265 265 

N=900 16562 312 281 

 
Figure 1: Best case time curve 

6.3 Average Case Time Analysis (Practically) 

Table 12: Average case time data analysis 

Input type 

(1000 inputs 

with n length 

character) 

Smith 

Waterman 

Algorithm [5] 

[9] 

(Time ms) 

Modified 

Smith-

waterman 

Algorithm[12] 

(Time ms) 

Our 

Proposed 

Algorithm 

(Time ms) 

100 750 265 187 

200 3062 953 671 

300 6718 2156 1375 
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400 11968 4000 2421 

500 18484 6156 3828 

600 26406 8921 5468 

700 35609 12093 7453 

800 46500 15703 9765 

900 58641 19890 12390 

 
Figure 2: Average case time curve 

6.4 Worst Case Time Analysis (Practically) 

Table 13: Worst case time data analysis 

Input type 

(1000 

inputs with 

n length 

character) 

Smith 

Waterman 

Algorithm 

[5] [9] 

(Time ms) 

Modified 

Smith-

waterman 

Algorithm[12] 

(Time ms) 

Our 

Proposed 

Algorithm 

(Time ms) 

100 765 93 140 

200 3078 406 453 

300 7093 793 937 

400 12812 1359 1593 

500 19765 2058 2406 

600 28343 2937 3453 

700 38421 3859 4718 

800 50125 5156 6031 

900 63656 6515 7500 

 
Figure 3: Worst case time curve 

According to these collected data and analysis, it is apparently 

observed that the proposed algorithm performs much better and 

much faster than both Smith-Waterman algorithm [5], [9] and 

upgraded algorithm [12] to find out or comparing a gene-

sequence from a genome database. 

6.5 Practically Space Complexity Analysis and Graph 

For practical calculation the space/memory complexity is done 

by the topic “complexity of algorithm” [5], [6]. It is clear that 

in average case, worst-case (that means number of similarities 

is so small) and best case proposed algorithm gives better 

performance for memory. 

Table 14: Memory taken by these three algorithms 

Input type 

(1000 inputs 

with n 

length 

character) 

Smith 

Waterman 

Algorithm [5] 

[9] 

(Space in Mb) 

Modified 

Smith-

waterman 

Algorithm[12] 

(Space in Mb) 

Our 

Proposed 

Algorithm 

(Space in 

Mb) 

100 38.204193 38.204193 0.476456 

200 152.626038 152.626038 0.952911 

300 343.265533 343.265533 1.429367 

400 610.122681 610.122681 1.905823 

500 953.197479 953.197479 2.382278 

600 1372.489929 1372.489929 2.858734 

700 1868.000031 1868.000031 3.335190 

800 2439.727783 2439.727783 3.811646 

900 3087.673187 3087.673187 4.288101 

 

 
Figure 4: Full curve of space or memory complexity of 

these three algorithms 

 
Figure 5: Partial curve of space or memory complexity of 

these three algorithms (for better understanding) 

7. Conclusion 

In bio-informatics there are a huge number of papers for 

decreasing the time and space complexity but increasing the 

accuracy of sequences matching and reducing computational 

complexity is still a great challenge; because existing 
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algorithms also give better performance, such as heuristic tool 

like FASTA (a protein sequence alignment software package) 

partially uses the Smith-Waterman Algorithm. The 

computational complexity of Smith-Waterman Algorithm for 

local-alignment sequence matching is relatively high as (MN). 

But our proposed algorithm reduces that computational 

complexity to (N (M+1)/2). The space complexity of Smith-

Waterman Algorithm is O (MN) but our proposed algorithm 

reduces that space complexity to (N). The major analysis of 

this research based on primary structure. But we believe that 

anyone can also get help for further research on secondary and 

tertiary structure for deriving new procedure besides using this 

proposed algorithm in real life. 
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