

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 9 September, 2014 Page No. 8321-8325

Ameya Daphalapurkar, IJECS Volume 3Issue 9 September, 2014 page no. 8321-8325 Page 8321

Mapreduce & Comparison of HDFS And GFS

Ameya Daphalapurkar
1
, Manali Shimpi

2
, Priyal Newalkar

3

1RamraoAdik Institute of Technology, Department of Computer Engineering,

Nerul, Navi Mumbai, Maharshtra, India – 400706.

0411ameya@gmail.com

2RamraoAdik Institute of Technology, Department of Computer Engineering,

Nerul, Navi Mumbai, Maharshtra, India – 400706.

mana93cs@gmail.com

3RamraoAdik Institute of Technology, Department of Computer Engineering,

Nerul, Navi Mumbai, Maharshtra, India – 400706.

priyaln21@gmail.com

Abstract: Distributed file systems are client based applications in which the central server stores the files that can be accessed via clients

with proper authorization rights. Similar to an operating system, the distributed file systems manage the overall system with naming

conventions and mapping schemes. Google file system (GFS) was the proprietary system developed by Google for its own use, which

included deployment of commodity hardware to retain the enormous generation of data. Hadoop Distributed File System (HDFS), an

open source community project, was majorly developed by Yahoo! was designed to store large amounts of data sets reliably along with

providing high sets of bandwidths for streaming data on client applications. For the processing of the data stored in HDFS, Hadoop

provides the users with a programming model called MapReduce. This model allows the users to reliably distribute a large problem into

smaller sub-problems onto several nodes in number of clusters without facing any problems. In this paper, we describe the GFS and

HDFS and compare and contrast the two systems based on a list of attributes as also this paper provides the basic functionality of

MapReduce framework.

Keywords: HDFS, GFS, MapReduce, distributed file system

1.Introduction

The digital data in terms of images, videos, records are

increasing at a fast pace. There is a revolutionary change

in the rise of both structured and unstructured data.

Organizations require the big data [1] to be stored,

managed and processed. The big data storage requires

scaling to keep up with the ever increasing growth in the

amount of data as well as provide low latency for

analytics work.The largest big data practitioners are

Google, Facebook, Apple etc. which use hyper scale

storage environment [2].

Google was first to face the issues of big data storage.

Google came up with Google File System (GFS) as the

solution to the problem of storage of big data. It is a

scalable distributed file system for large distributed data-

intensive applications [3].GFS was designed with many

goals common to those of many distributed file systems

[3]. Many assumptions such as hardware failures,

workloads, high throughput and low latency guided the

design of GFS.

The well-known Apache Hadoop project [4] also includes

a similar module of distributed file system called as

Hadoop Distributed File System (HDFS) to store data on

commodity machines. The Apache Hadoop’s components

– MapReduce and HDFS were originally derived from

Google's MapReduceand Google File System (GFS)

papers.

2. Comparative Analysis

2.1 Architecture

HDFS [5] and GFS [3] have number of similarities when

architecture is taken into consideration. Both the systems

involve a master node that controls the overall exaction of

the system and the communication between the nodes take

place through heartbeats which are messages for

instructions and to understand the datanode or chunk’s

state.

Google file system’s[10] cluster includes a single master

and a number of chunkservers, which are typically

commodity Linux machines which run the user level

mailto:0411ameya@gmail.com
mailto:mana93cs@gmail.com
mailto:priyaln21@gmail.com
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Google_File_System

Ameya Daphalapurkar, IJECS Volume 3Issue 9 September, 2014 page no. 8321-8325 Page 8322

server processes. Architecture involves a division of files

in fixed size chunks, each of which are identified by a

chunkhandle. The master maintains the metadata,

mapping of the chunkservers, chunk state information etc.

Hadoop Distributed File System is a cross-platform,

scalable file system written in Java. HDFS has a single

NameNode and a number of datanodes which serve the

network using the protocols specific to HDFS.[wiki] Files

in HDFS are split into many blocks which are stored on

DataNodes. The entire file system namespace is managed

by NameNode.

The difference between implementation of the two file

systems is delineated in a nutshell in Table 1.

Table 1: Implementation

 Hadoop

Distributed File

System

Google File

System

Platform Cross-platform Linux

Written In Java C , C++

License Apache 2.0 Proprietary

Developer(s) Primary: Yahoo!

And also the open

source community

Google

The difference and similarity with respect to the

architectures of the two systems is explained in table 2.

Table 2: Architecture

 Hadoop

Distributed File

System

Google File System

Node Division NameNodes &

DataNodes

MasterNodes &

ChunkServers

Architectural

paradigm

Complete view of

the file system is

available for the

NameNode.

Master stores files

and locations and

makes global

policy decisions

regarding storage

of chunks on

servers or racks.

Hardware

Utilization

Commodity hardware or servers

Inter-Node

Communication

NameNode and MasterNode both use

periodic heartbeats to convey commands

to ChunkServers or DataNodes

ChunkServers or

DataNodes

Server process at user level store chunks

in local file system as files.

2.2 File System State

In GFS[3], the client application translates the file name it

specifies into chunk index within a file using the fixed

size chunks. The request is then forwarded to the master

who contains the file name and chunk index and the

request is replied with a chunk handle and location.

In HDFS, the NameNode preserves the mapping of the

files and the DataNode is consistently flushed with file

index state and it results in the modifications of logs and

records.

The Table 3 casts differences between the indexing of the

files and chunks and on the methods for verifying data

integrity.

Table 3: File System State

 Hadoop Distributed

File System

Google File System

File Index State File index state and

mapping of files to

chunks kept in

memory at

NameNode and

periodically flushed

to disk;

modification log

records changes in

between flushing.

The chunk size is

used by the client to

translate the file

name into a chunk

index which is later

requested to the

master along with a

file name.

Chunk State and

Location

Chunk location

information is

consistently

maintained by the

NameNode.

Chunk location

handle and location

of replicas is replied

by the master to the

requesting client,

which the client

caches by using the

index and filename

as a key.

Data Integrity Data that is written

by a client is sent to

a pipeline of

DataNodes and the

checksum is

verified by the last

DataNode in the

pipeline.

ChunkServers use

checksums to detect

corruption of the

stored data.

Comparison of the

replicas is another

alternative.

2.3 File System Operations

In GFS[9], the default size of the chunks is 64mb. GFS

provides with operations such as record appends and

delete operations and has a unique garbage collection

process.

In HDFS, default block size is 128mb and it supports only

append operations. The deleted files are renamed and

moved into folders from which they are later subject to a

lazy garbage collection process[10].

Table 4: Operations

Ameya Daphalapurkar, IJECS Volume 3Issue 9 September, 2014 page no. 8321-8325 Page 8323

 Hadoop Distributed

File System

Google File System

Write

Operations

Supports only

append.

Along with append

operation, even

random offset writes

and record appends are

performed

Write

Consistency

Guarantees

Consists of a single-

writer model which

assures that the files

are always defined

and consistent.

• Undefined region are

created by successful

concurrent writes.

• Defined regions are a

result of successful

concurrent appends.

Deletion Deleted files are

renamed into a

particular folder and

are then removed

via garbage

collection process.

Unique garbage

collection process. The

resources of deleted

files are not reclaimed

immediately and are

renamed in the hidden

namespace which are

further deleted if they

are found existing for

3 days of regular scan.

Snapshots Up to 65,536

snapshots allowed

for each directory in

HDFS 2.

Individual files and

directories can be

snapshotted in GFS.

Default Size 128 MB default but

it can be altered by

the user.

64 MB default but it

can be altered by the

user.

3. MapReduce Functionality

Google first developed the programming model and

software framework called MapReduce to process large

sets of data. It was designed to process the records from

the user in parallel via Mappers and then merge the

outputs of these Mappers with the help of Reducers.

MapReduce technique follows a divide-and-conquer

strategy while executing the data-centric applications.

Implementation of applications using MapReduce takes

place in two phases viz. map and reduce phase[7].

Based on the notion of parallel programming the

MapReduce functionality is implemented with the help of

centralized master/slave architecture. The architecture

employs a single master node (job tracker) and several

slave nodes (task tracker). The job tracker is in charge of

scheduling the jobs’ tasks on the slaves, monitoring the

performance of the slaves and re-executing the tasks

experiencing any kind of failure and acts like an interface

between the user and Hadoop framework. Whereas, the

task trackers are responsible for executing the tasks as

guided by the job tracker (master) and manage the data

flow between the two phases[6].

3.1 Core functionality Of Map Phase

In this phase, user submits the large problem input to the

job tracker. Job tracker assigns the problem input to the

various task trackers requesting to the job tracker (pull

mechanism) , by slicing the large input into smaller

chunks of data (<key, value> pairs) using the map

function that can be processed in isolation. Task trackers

receive the tasks based on the number of free slots

indicated to the master via the heartbeat protocol.[6] Task

trackers on receiving their respective tasks read the input

stored in HDFS. These workers (slaves) execute these

smaller sub-problems and then back to the master node.

Mapper maps the input key-value pairs to generate the

intermediate key-value pairs. The outputs of the maps are

then sorted by the framework and stored on a local storage

for easy access to the reducers [8].

Combiner functions are sometimes used on the output of

map phase to improve the efficiency by saving the data-

transfer bandwidth. Local aggregation is performed by

these functions by grouping the intermediate values

corresponding to a particular output value[7].

3.2 Core functionality of Reduce phase

The reducer program reads all the intermediate results

from the local storage having the same key values and

invokes the reduce function to generate a smaller single

solution. The reduce function is supplied by the user.[8]

The output writer collects the results of the reduce

program which are then written back and stored in temp

files HDFS. On completion of all the reduce tasks this

temp file is automatically renamed to its final destination

file name thereby terminating the operation of parallel

processing.

 The task trackers report their status to the job trackers

after specific time-intervals for the job trackers to monitor

the progress of the process currently in execution on

several nodes. In case, if the job tracker fails to receive the

status information from any of the task tracker for a

certain amount of time, the job tracker assumes that the

task tracker node has failed and thereby reassigns the task

to some other available task tracker. If the task tracker

fails in execution during the reduce phase then only the

incomplete reduce operation is being re-executed by some

other slave node[6].

Following figure explains the basic MapReduce model.

Ameya Daphalapurkar, IJECS Volume 3Issue 9 September, 2014 page no. 8321-8325 Page 8324

Figure 1: MapReduce model

4. Conclusion

GFS and HDFS are similar in many aspects and are used

for storing large amounts of data sets. HDFS being a

module of an open source project (Hadoop) it is vastly

applicable (Yahoo!, Facebook, IBM etc use HDFS) as

compared to the proprietary GFS.

MapReduce provides distributed, scalable and data-

intensive computing. It is reliable and fault-tolerant and

provides load-balancing as processing of a large task is

done in several clusters simultaneously [7].

On the other hand, there are problems that cannot be

divided into isolated sub-problems cannot be processed

using MapReduce. As Jobs run in isolation in MR, if the

processes need to communicate with each other during the

processing then it is difficult in MapReduce. Streamed

data is difficult to handle using MapReduce.

 In this paper the comparison between GFS and HDFS is

made on the basis of few parameters.

5. References

[1] http://en.wikipedia.org/wiki/Big_data. [Accessed:

Sept. 8, 201

[2] http://en.wikipedia.org/wiki/Hyperscale.

[Accessed: Sept. 10, 2014

[3] S. Ghemawat, H. Gobioff, S.-T. Leung,

The Google File System, ACM SOSP10/2003.

[4] http://hadoop.apache.org/. [Accessed: Sept. 12,

2014]

[5] K. Shvachko, H. Kuang, S. Radia and R.

Chansler, “The Hadoop Distributed File System”,

IEEE 26th Symposium on Mass Storage Systems

and Technologies (MSST), (2010) May 3-7:

Incline Village, USA.

[6] Heger, D., "Hadoop Design, Architecture &

MapReduce Performance", CMG Journal of

Computer Resource Management,December 2012.

[7] http://www.opensourceforu.com/2011/03/mapred

uce-more-power-less-code-hadoop/[Accessed:

Sept. 8, 2014]

[8] Casey McTaggart, “Object-oriented framework

presentation”,CSCI 5448.

[9] Chen, Y.Ganapathi, A.R.Griffith and Katz R.,

”The Case for Evaluating MapReduce

Performance Using Workload Suite.”

{\textit{Modeling, Analysis and Simulation of

Computer and Telecommunication System,

Singapore, 25-27 July 2011. Page(s)::390 - 399}}

[10] Claudia Big Data Processing, 2013/14

Lecture 5: GFS & HDFS - distributed file systems

Claudia Hauff (Web Information Systems)

Author Profile

Ameya Daphalapurkar , a student of B.E. computer

engineering at Ramrao Adik Institute of Technology, navi

Mumbai,Maharashtra,India.

http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Hyperscale
http://hadoop.apache.org/

Ameya Daphalapurkar, IJECS Volume 3Issue 9 September, 2014 page no. 8321-8325 Page 8325

Manali Shimpi , a student of B.E. computer engineering at

Ramrao Adik Institute of Technology, navi

Mumbai,Maharashtra,India.

Priyal Newalkar , a student of B.E. computer engineering at

Ramrao Adik Institute of Technology, navi

Mumbai,Maharashtra,India.

