

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume - 3 Issue -9 September, 2014 Page No. 8175-8178

Ruchi Kulkarni, IJECS Volume-3 Issue-9 September 2014 Page No. 8174-8178 Page 8175

A Metric Base Calaculation for Object Oriented

Software Modularization Quality Measurement
1
 Ruchi Kulkarni,

2
 Samidha Diwedi Sharma

1 M-TECH *,Department of Information Technology,

NRI Institutions, University of RGPV, Bhopal (MP)

India

E-mail:ruuchik@gmail.com

2 Prof, Department of Information Technology,

NRI Institutions, University of RGPV, Bhopal (MP)

India

E-mail: samidhad2000@gmail.com

ABSTRACT

Software development and maintenance is major concern to adopting modularization. Measuring the design quality

early during software development has been regarded as a prominent way to assure the quality of software products.

Several models has been proposed to estimate the quality of software systems.

This system proposed an approach for determining the design quality of an Object Oriented software using software

metrics. The metrics for object oriented design focus on measurements that are applied to the class and design

characteristics. To validate the proposed methodology, we have chosen Open source software project. We extracted a

set of chosen software metrics that play a definite role in software design quality. Our metrics characterize the quality

of modularization with respect to the APIs of the modules. The percentile average values calculated by these metrics

formulate a straight forward approach to assign a design quality for any software systems.

For this work simulation, an application is developed in java. This system examines the modularization quality of OO

software by measuring the extent in which a class in a module uses another class in some other module and the extent

of inter-module call traffic created by inheritance Experiments are carried out by means of different software version

and the result show that it works properly. The outcomes of the experimental study provide a strong base for the

effectiveness of our system for metric based design quality measurement of object-oriented software.

Introduction

The fundamental issue faced by the developers in

today’s environment is how to measure the quality of

software. Over the past couple of decades, the speed of

computer hardware development has far exceeded

software productivity development. As computers are

used in al1 sorts of everyday activities, the demand for

sophisticated and flexible software also increases

The software development process is a difficult and

modularization can makes it more complicated. This is

the challenge to measure the quality of objects oriented

software modularization. Modularization of object

oriented code is distribution of the software in to

modules and these modules should communicate with

each other through some application programming

interface (API). More properly modularized software is

also easy for maintenance work and it can help the

developer. In our work we are considering the object

oriented java language code for defining metrics and

modularization as modules.

Ruchi Kulkarni, IJECS Volume-3 Issue-9 September 2014 Page No. 8174-8178 Page 8176

Now days lot of software’s are developed by the

developers. Many of the software’s are very big in code

size.

So generally to maintain the quality of the code,

developers need to distribute the code in small pieces or

parts. But how to divide the software is also an

important task as it can lead to various problem of inter

module communication therefore this modularized code

should also be checked for the quality. There are

problems in removing the errors of non modularized

code. Particularly in object oriented software

development developer needs to use a lots of object

oriented concepts which may introduced the inter

dependency of the various units of the software e.g.

Inheritance. Software metric is a measure of some

property of a piece of software or its specifications.

Therefore software metrics suite is needed . We are

concentrating on the same issue and providing the

software metrics for this modularized object oriented

code.

PREVIOUS WORKS

In this previous works, we studied the metrics which

are developed only for the non-objective oriented software

systems. Time constraint was also a major issue as different

metrics were calculated individually and results was also

based on that metrics so it was difficult in respect to

complexity also.

Proposed approach

The work reported here is an experiment to check the

modularization quality of the object oriented java code using

the following four metrics. These metrics are the base for this

experiment which is referred from Sarkar et al. Details of the

metrics or formulas are given in their work. The list of

referred metrics and their relationship with the

assumptions is provided. The referred metrics are as

follows:

 Module Interaction index

 API function usage index

 Non API function usage index

 Implicit Dependency index

In this system MOOD metrics are discussed in the

context of encapsulation, inheritance. The MOOD

metrics, defined by Fernando Brito e Abreu[2], are

designed to provide a summary of the overall quality of

an object-oriented project. The MOOD metrics referred

here as

 Method Inherited Factor

 Method Hiding Factor

After applying this selection of metrics we will then

identify OMI by the values of this metrics.OMI will tell

the modularity of any software with reference to this

metrics. By OMI the modularization achieved would be

functionally correct.

PROPOSED METRICS

The following metrics are proposed based on

object oriented programming concepts which are largely

used for the software development. The non-object

oriented metrics given by Sarkar et. al. [1] is a base for

our work. Application programming interface (API) is

the important term which we are going to use. API

functions are the functions only which can be get called

outside the module and non API functions are not called

outside the module. In our implementation we are going

to check if a function calling is found in another module

or class then it will be API function and if not found then

such functions will be considered as isolated and non

API functions. The measurement technique is applying

the metrics . The proposed metrics for object oriented

code are as follows:

Module Interaction Index(MII)

This metric calculates the index factor for module

communication and how well API functions of modules

are used by the other modules in the system for

communication. Assume that a module has n functions

from 1 to n, of which the n1 API functions are given by

the subset {f1api.....fn1api}. Cext is used to denote the

total number of external calls coming from the other

modules. It is a java file as module. Also assume that

system has m1 to mi modules. Total number of modules

is M.

1 1{ ... } ()

()
()

a a a a

n ext

ext

f f f K f

MII m
K m






In ideal case when all the module calls are routed

through the function calls only, value of MII should be

1.

 Application Programming Usage Index(APUI)

 This index determines what fraction of the API functions

exposed by a module is being used by the other module. Some

times in one java file (module) may consists of various classes

and API functions with different functionalities. If any other

single module is calling the API but need only small part of it

then it is unnecessarily calling the big API. Hence to avoid the

formation of such module this index factor is used. The

maximum value of this metric should be 1.

Ruchi Kulkarni, IJECS Volume-3 Issue-9 September 2014 Page No. 8174-8178 Page 8177

1

()
*

k

j jn

APIU m
n k






 Non API Function Closedness Index(NC)

 Ideally,the non-API functions of a module should not

expose themselves to the external world. If the big

software system is not modularized fully then there can

be the use of non API functions. This is not preferable.

As there should not be a use of non API function outside

the module or a java file. For a well designed module

value of NC will be 1. otherwise the value will be

between 0 and 1.

()

na

m

a

m m

F
NC m

F F




Implied Dependency Index(IDI)

When function in one module is writing to a global

variable that is in use by another module then there is

indirect dependency. There can be many events where

this kind of dependency occurs in program. The number

of dependencies must be few and far between.This is

based on principle of module encapsualtion P2.The ideal

value should be 1.

()

()

(,)
()

((,) (,)

j

j

m C m f i j

g i j f i jm C m

D m m
IDI m

D m m D m m











Method Inherited Factor(MIF)

MIF is defined as the ratio of the sum of the inherited

methods in all classes of the system under consideration

to the total number of available methods(locally defined

plus inherited) for all classes.MIF measure directly the

number of inherited methods as a proportion of the total

number of methods. Method hiding factor measure how

variables and methods are encapsulated in a class.

Visibility is counted in respect to other classes. MHF

represent the average amount of hiding among all classes

in the system. A private method is fully hidden. In

JAVA, hiding is as following: Protected, Public,Private.
MHF = 1 –Methods Visible

Methods Visible = sum(MV) / (C-1) / Number of methods

MV = number of other classes where method is visible

C = number of classes

Method Hiding Factor(MHF)

MHF is defined as the ratio of the sum of the

invisibilities of all methods defined in all classes to the

total number of methods defined in the system under-

consideration. The invisibility of a method is the

percentage of the total classes from which this method is

not visible. In other words, MHF is the ratio of hidden

methods –protected or private methods. If all methods

are private, MHF=100% .If all methods are public,

MHF=0%

MIF = inherited methods/total methods available in

classes

Implementation Method
 Read stored meta-data from the database and

calculate various metrics values

 Apply following formula

 OMI = [Ʃn
1 (mi * wi)] / n, where

 m: metrics value

 w: Weight Value

 n: total metrics

Conclusion

The proposed system is capable to estimate the

software quality of the modules of the software.

The referred metrics are implemented for object

oriented code modularization and it is also

proposed that use of metrics with few

assumptions can be done for Object-Oriented

Software System. The implemented metrics are

based on the concept of API. The output values

lies in the range 0 to 1 after applying metrics on

code. This dissertation also deals with the role of

code analyzer. This will help the developer to

provide a quality modularized code.

 References

 [1] Sarkar S., Kak A. C. and Rama G. M, “API-

Based and Information-Theoretic Metrics for measuring

the Quality of Software Modularization” IEEE Trans.

Software Eng., vol. 33, no. 1, pp.14-30.

 [2] Santonu Sarkar, Member, IEEE, Avinash C. Kak,

and Girish Maskeri Rama,“Metrics for Measuring the

Quality of Modularization of Large-Scale Object-

Oriented Software” , IEEE Trans. Software Eng.VOL.

34, NO. 5, SEPTEMBER/OCTOBER 2008

Ruchi Kulkarni, IJECS Volume-3 Issue-9 September 2014 Page No. 8174-8178 Page 8178

 [3] Abreu, Fernando B: "The MOOD Metrics Set,"

Proc. ECOOP'95 Workshop on Metrics, 1995IEEE

Trans. Software Eng,

[4] R. Harrison, S. Counsell and R Nithi. An evaluation

of the MOOD Set of Object-Oriented Software Metrics.

IEEE Transaction on Software Engineering, Vol. 24, No.

6,June 1998

[5] Chidamber S. R. and Kemerer C. F.,“A Metrics Suite

for Object Oriented Design,” IEEE Trans. Software

Eng., vol. 20, no. 6, pp. 476-493, June 1994.

[6] Fenton, N., and Pfleeger, S. L. "Software

Metrics - A Rigorous and Practical Approach", 2ed.

International Thomson Computer Press, London, 1996.

[7] L. A. Laranjeira, “Software Size Estimation of

Object-Oriented Systems”, IEEE Transaction on

SoftwareEngineering, Vol. 16, No. 5, May 1990, pp.

510-522.

[8] W. Li and S. Henry, “Object-oriented Metrics

whichPredict Maintainability”, The Journal of Systems

andSoftware, Vol. 23, Issue 2, November 1993, pp. 111-

122.

[9] V. L. Basili, L. Briand and W. L. Melo, “A

validationof object-oriented Metrics as Quality

Indicators”,IEEE Transaction Software Engineering.

Vol. 22, No. 10, 1996, pp. 751-761.

