

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 3 March 2014 Page No. 4066-4068

Junaid Latief Shah, IJECS Volume 3 Issue 3March 2014 Page No.4066-4068 Page 4066

Cross Site Scripting (XSS): The dark side of HTML

Junaid Latief Shah
1
, Asif Iqbal Khan

2

1Dept of Computer Science, University of Kashmir,

Srinagar, India

junaidlatiefshah@gmail.com

2 Dept of Computer Science, University of Kashmir,

Srinagar, India

khanasifiqbal7@gmail.com

Abstract: In recent times, web remains the preferred platform for users to carry out their business activities. The migration of

applications to web has been rapid ranging from applications like E-commerce, Public forum, E-governance, E-banking,

Shopping Portals or any other applications running on the web. Web Applications have increased its usage because of easy

accessibility to different users around the world. But as the usage of the web has increased, it has also given an undesirable or

dark side to the usage of html. Cross-site scripting (XSS) attacks continue to remain the topmost threat to web apps, databases

and websites around the world for a considerable amount of time now. A survey of about 15 million cyber attacks in the third

quarter of 2012 has revealed that most of these attacks are XSS based. Although attacks like SQL Injection, CSRF and

Phishing are also common, XSS still remains the preferred technique for hackers to carry out malicious activities on web. This

paper discusses about XSS attacks, their operation and different categories of XSS attacks. The paper also highlights the

mitigation scenario and techniques possible for prevention.

Keywords: Cross Site Scripting (XSS), SQL Injection, CSRF, Phishing, Cyber Attacks.

1. Introduction

In the past, enterprise software would be located in trusted

areas of a company‟s network. A company‟s Application would

remain on single system in the office or on all the machines

with their own software copy with some communication

between these computers or no communication at all. As a

result these applications were very less vulnerable to different

attacks and hackers. But the world is changing. Web based

applications are gaining more and more popularity and usage

day by day. Today Web Applications have become most

important communication channel between the service provider

and the users. Today, Web Applications are gaining more and

more popularity as we can build very beautiful and user

interactive pages by the extensive use of some client site

scripting languages e:g JavaScript. And this growing use of

JavaScript is increasing serious security vulnerabilities in web

application like SQL injection and Cross Site Scripting or XSS,

later being the topmost threat.

SQL Injection is an attack where the victim is the database on

the server in which an attacker can inject some code into the

database as a part of query and can sneak into the database to

find the data like passwords, usernames etc. According to the

WASC (Web Application Security Consortium) reports, about

9% of the totals hacking incidents reported until 27th July 2006

were due to SQL Injection [1]. Recent research from Acunetix

also shows that 50% of the web applications scanned every

year are susceptible to SQL Injections. SQL injection also have

a variant [3][4] known as Blind SQL Injection that aims to ask

database true or false questions and determines the answer

based on what application responses. This technique is a hit

and trial method which a hacker uses to get access to victims

database. Cross Site Scripting (XSS) is different from SQL

injection in the way that XSS targets the client‟s browser i:e the

victim here is not the database server but the client

browser.XSS is an attack in which an attacker injects some

scripting code into the output of a web application which is

then sent to a victim‟s web browser where the scripting code

gets executed.

2. Cross Site Scripting (XSS)

Cross Site Scripting (XSS) vulnerabilities have been the

nightmare of Web applications for considerable amount of time

now. The research carried out at WASC [6] shows that about

100,059 XSS vulnerabilities have been checked by analyzing

31,373 Web sites. Cross Site Scripting (XSS) vulnerabilities

attack web applications by inserting client side code or script

into web pages that are accessed by users. A number of popular

websites including Face book, Twitter, McAfee, MySpace,

Junaid Latief Shah, IJECS Volume 3 Issue 3March 2014 Page No.4066-6068 Page 4067

eBay and Google have been the prime targets of XSS exploits.

The attack exploits improper coding of your web applications

allowing a hacker to inject malicious script into a web form to

allow them to gain access or tamper your application.ie

improper sanitization or filtering of user input. The executable

code of XSS is normally written in popular scripting and

programming languages like JavaScript, vbscript, php etc. The

pseudo code and the figure 1 below show little demonstration

of an XSS attack

Figure 1 Operation of XSS

Suppose there's a public forum or blog or discussion website

where people can ask Questions regarding some subject. Each

question asked by users is stored in a database and rendered as

a list, if someone requests the relevant section of the page.

Such a list might look like this (no XSS code embedded here):

<html>

<head>

<title> Discussion Forum – Technology Section</title>

</head>

<body>

 List of questions:

<p> Question: "Which is the advantage of <i> cloud

computing</i> in current times?”

</p>

<p> Question: "What are the attributes of distributed operating

systems?"</p>

</body>

</html>

When a malicious user visits this page he will immediately

notice that the text cloud computing is rendered italic in his

browser and concludes that the user that posted the question

added the corresponding tags himself. Now the malicious user

might post a question like this:

Code with embedded XSS attack:

<html>

<head>

<title> Discussion Forum – Technology Section</title>

</head>

<body>

List of questions:

<p> Question: "Which is the advantage of <i> cloud

computing</i> in current times?”

</p>

<p> Question: "What are the attributes of distributed operating

systems?"</p>

<p> Question: "<Script>alert („Welcome to technology…') ;<

/script>"</p>

</body>

</html>

Now, every time a user visits this page, a pop-up will be

generated every time and appear in that user's browser that

displays the words “Welcome to technology…” While only

some technology literate users will actually consider this as

attack, other naive users will surely not pay any heed and

consider it as a normal pop up. By this way of injecting

malicious code into web pages, an attacker can gain high

access-privileges to sensitive page content, website cookies and

numerous other information stored by the browser on behalf for

user, making Cross-site scripting attacks, therefore a unique

case of malicious code injection [6].

3. Types of XSS

There is basically no standard classification of Cross site

scripting but usually experts divide these attacks in two main

types Persistent and non Persistent. Some experts classify XSS

threats as Type 0 (DOM Based), Type 1 (Reflected) and Type

3 (Persistent).

3.1 Type 0 or DOM based Attack

This form of XSS vulnerability is also referred as DOM-

based (Document object Model) attack. In DOM based cross-

site scripting attack, the vulnerability is present within a page's

client-side script itself. For example, if a piece of JavaScript

accesses any object like document.url and uses this data to

write some HTML code to its own page, and if this data is not

properly encoded using HTML tags, an XSS loop hole will

likely be existing, since this written data will be re-interpreted

by browsers as HTML which could include additional client-

side script

3.2 Type 1 or Non Persistent Attack

Non persistent or reflected threat occurs when the input data

provided by user via form submission or query string is

immediately used by the server to display the result back to the

user or we can say the input is written back unaltered. If the

Junaid Latief Shah, IJECS Volume 3 Issue 3March 2014 Page No.4066-6068 Page 4068

user supplied data is not filtered or validated, some of the

results could include a client-side script that is executed in the

browser instead of HTML.

3.3 Type 2 or Persistent Attack

Persistent or stored XSS attack is called persistent because it

gets stored somewhere on the server and the effect of the attack

is not immediate. In this type of attack the data provided by the

attacker gets stored on the server usually in the database and

then displayed as normal to all other users. An example of this

type of attack is when someone writes a HTML formatted

review or comments on a review for other users to read. When

some user reads the review the code gets executed on the user‟s

browser and does some unwanted stuff like stealing cookies,

redirect to some other page etc.The operation is shown in the

figure 2 below.

Figure 2: Operation of Persistent Attack

For example the code in the comment or review can be like this

Thank for your review <script>

window.location.href="http://abc.com"</script>

The above message will be stored in the database as it is and

when some future user visits the page, the comment will be

displayed but immediately the code in the script tag will be

executed and the victim will be redirected to “abc.com”.

4. Mitigation Techniques

A study of majority of web attacks reveals that they are caused

due to improper coding of web applications and inability to

filter or sanitize input coming into web. The attacks such as

XSS and injection attacks occur due to non sanitization of user

input. The majority of these web application attacks are

mitigated either on the client side or server side. The client side

mitigation normally involves input validation techniques. These

techniques normally restrict a user from supplying malicious

data to the web page. On the other hand, server side mitigation

involves filtering the user input or output sanitation. One

solution is also to block all JavaScript in your browser but that

will restrict the user from developing or viewing interactive

web applications .Some researchers have also suggested using

browser plug-in that will incorporate some kind of artificial

intelligence to restrict or filter user input thereby adding an

intelligence factor to browser. Analyzing xss attacks, there are

number of client side solutions implemented by the developers

all over the world but still to completely secure a web

application is still its infancy.

5. Conclusion

This paper carried an extensive survey about cross site

scripting attack and discussed about different types of XSS

attacks. The information contained in this paper could be very

useful for new application/web developers for developing

smarter and secure applications running over the web. The

paper also lists some of the mitigation scenarios. Although a

complete secure application is not guaranteed in the modern

world, but still a considerable amount of work and research has

been done in this area. Completely securing a web application

seems to be a daunting task for developers today.

References

[1]http://www.acunetix.com/websitesecurity/sql-injection/

[2]http://www.computerweekly.com/news/2240168930/XSS-

 attacks-remain-top-threat-to-web- applications

[3]https://www.owasp.org/index.php

[4]http:// blindsqlinjection.com/

[5]web Application Security Statistics,06(WASC)

 http://www.webappsec.org/projects/statistics/

[6]Y. Xie and A. Aiken, “Static Detection of Security

 Vulner-abilities in Scripting Languages,” Proc. 15th Use

 nix Security Symp. (Use nix-SS 06), vol. 15, Use nix, 2006,

 pp.179-192.
[7]Rohit Dhamankar,MikeDausin,Marc Eisenbarth, and James

 King. The top cyber security risks http://www.sans.org/top-

 cyber-security-risks/,2009

[8]http://cwe.mitre.org/top25/(2010).

[9]Rao,T."DEFENDING AGAINSTWEBVULNERABILITI

 ES AND CROSS-SITE SCRIPTING." Journal of Global

 Research in Computer Science 3.5 (2012): 61-64.

[10]O. Hallaraker and G. Vigna. “ Detecting Malicious

 JavaScript Code in Mozilla”, In proceedings of the IEEE

 International Conference on Engineering of Complex

 Computer Systems (ICECCS), 2005

