
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 4 April 2015, Page No. 11482-11486

Pradip R. Patel, IJECS Volume 4 Issue 4 April, 2015 Page No.11482-11486 Page 11482

Database Recovery Techniques: A Review

Pradip R. Patel

Information Technology Department, Government Polytechnic,
Sector-26, Gandhinagar-382026, Gujarat, India.

patel_pradip_r@yahoo.com

Abstract: Database system has evolved from a specialized computer application to a central component of a modern computing

environment, and, as a result, it has become an essential part of computer science. A major responsibility of the database administrator is to

prepare for the possibility of hardware, software, network, process, or system failure. If such a failure affects the operation of a database

system, we must recover the database and return to normal operation as quickly as possible. Recovery should protect the database and

associated users from unnecessary problems and avoid or reduce the possibility of having to duplicate work manually. Recovery processes

vary depending on the type of failure that occurred, the structures affected, and the type of recovery that you perform. Recovery refers to the

various strategies and procedures involved in protecting the database against data loss and reconstructing the database after any kind of

failure. This paper presents a conceptual level description of various issues and techniques related to recovery.

Keywords:

1. Introduction

Database [1,2,5] recovery is the process of restoring data that

has been lost, accidentally deleted, corrupted or made

inaccessible for some reason. The basic unit of recovery in a

database system is the transaction [1,2]. It is a unit of program

execution that accesses and possibly updates various data

items. It is initiated by a user program written in a high-level

programming language. A database system must ensure proper

execution of transactions despite failures - either the entire

transaction executes, or none of it does. Furthermore, it must

manage concurrent execution of transactions in a way that

avoids the introduction of inconsistency. To ensure integrity of

the data, database system must maintain the ACID properties

[1] of the transactions. A computer system is subject to failure

due to various reasons like disk crash, power outage, software

error, a fire in the machine room, even sabotage. Transactions

may also fail for various reasons, such as violation of integrity

constraints or deadlocks. In event of failure information

concerning the database system is lost. Recovery[6] scheme

detects failures and restores the database to a state that existed

before the occurrence of the failure.

2. Failure Classification

Several types of failure [1] can halt the normal operation of a

database. For some of these failures, recovery is automatic and

requires little or no action on the part of the database user or

database administrator. Each of these failures needs to be dealt

with in a different manner. There are mainly three types of

failures: transaction failures, system failures, and media

failures.

2.1. Transaction Failure

When a transaction is failed to execute or it reaches a point

after which it cannot be completed successfully it has to abort.

This is called transaction failure. Logical error and System

error may cause a transaction to fail.

 Logical error: where a transaction cannot complete because

of it has some code error or any internal error condition.

 System error: where the database system itself terminates an

active transaction because database is not able to execute it

or it has to stop because of some system condition.

Deadlock is example of system error.

2.2. System Crash

There are problems, which are external to the system, which

may cause the system to stop abruptly and cause the system to

crash. For example interruption in power supplies, failure of

underlying hardware or software failure. Examples may include

operating system errors.

2.3. Disk Failure

A disk failure occurs when any part of the stable storage is

destroyed. Disk failures include formation of bad sectors,

unreachability to the disk, disk head crash or any other failure,

which destroys all or part of disk storage

In order to determine how system should recover from failures,

we need to identify failure modes of data storage devices. We

must also consider how these failure modes affect the contents

of the database. We can then propose recovery algorithms [3,6]

to ensure database consistency and transaction atomicity

despite failures.

3. Storage Media and Access

Various data items in the database [2] may be stored and

accessed in a number of different storage media [1]. We must

gain a better understanding of these storage media and their

access methods.

3.1. Storage Types

http://www.ijecs.in/
http://www.stanford.edu/dept/itss/docs/oracle/10g/server.101/b10735/glossary.htm#432086

Pradip R. Patel, IJECS Volume 4 Issue 4 April, 2015 Page No.11482-11486 Page 11483

Storage media[1] can be distinguished by their relative speed,

capacity, and resilience to failure. They are classified as

volatile, non-volatile and stable storage.

 Volatile storage: As name suggests, this storage does not

survive system crashes and mostly placed very closed to

CPU by embedding them onto the chipset itself for

examples: main memory, cache memory. They are fast but

can store a small amount of information.

 Non-volatile storage: These memories are made to survive

system crashes. They are huge in data storage capacity but

slower in accessibility. Examples may include, hard disks,

magnetic tapes, flash memory, non-volatile (battery backed

up) RAM.

 Stable storage: Information residing in stable storage is

never lost. Although stable storage is theoretically

impossible to obtain, it can be closely approximated by

techniques that make data loss extremely unlikely.

3.2. Data Access

The database is stored in non-volatile storage, and is

partitioned into fixed-length storage units called blocks[1].

Blocks are the basic units of data transfer to and from disk. It

may contain several data items. Transactions input information

from the disk to main memory, and then output the information

back onto the disk. The input and output operations are done in

block units. The blocks on the disk are referred to as physical

blocks. The temporarily stored blocks in main memory are

known as buffer blocks.

Figure 1: Block Storage Operations.

As depicted in Fig. 1, Blocks are moved between disk and main

memory are done through the following two operations:

 input(B) transfers the physical block B to main memory.

 output(B) transfers the buffer block B to the disk, and

replaces the appropriate physical block there.

Each transaction has a private work area in which copies of all

the data items accessed and updated are kept. The system

creates this work area when the transaction is initiated; the

system removes it when the transaction either commits or

aborts. Each transaction interacts with the database system by

transferring data to and from its work area to the system buffer

using two operations: read and write.

4. Recovery and Atomicity

Consider example of banking system and transaction Ti that

transfers Rs.100 from account X to account Y, with initial

values of A and B being Rs.500 and Rs.1000, respectively.

Suppose that a system crash has occurred during the execution

of Ti, after output(BA) has taken place, but before output(BB)

was executed, where BA and BB denote the buffer blocks on

which A and B reside. Since the memory contents were lost, we

do not know the outcome of the transaction; thus, we could

invoke one of two possible recovery procedures:

 Reexecute Ti. This procedure will result in the value of X

becoming Rs.300, rather than Rs.400.

 Do not reexecute Ti. The current system state has values of

Rs.400 and Rs.1000 for X and Y, respectively.

In either case, the database is left in an inconsistent [4] state,

and thus this simple recovery scheme does not work. Our goal

is to perform either all or no database modifications made by

Ti. However, if Ti performed multiple database modifications,

several output operations may be required, and a failure may

occur after some of these modifications have been made, but

before all of them are made. To achieve our goal of atomicity,

we must first output information describing the modifications

to stable storage, without modifying the database itself.

5. Log-Based Recovery

The log [1,7] is widely used for storing database modifications.

It is a sequence of log records, recording all the update

activities in the database. Among several types of log

records[1], an update log record describes a single database

write. It has following fields:

 Transaction identifier – It uniquely identifies the transaction

that performed the write operation.

 Data-item identifier – It uniquely identifies the data item

written.

 Old value - It is the value of data item before write

operation.

 New value - It is the value of data item after write

operation.

Various log records used to record major events during

transaction processing, such as the start of a transaction and the

commit or abort of a transaction are as following.

 < Ti start>. Transaction Ti has started.

 < Ti commit>. Transaction Ti has committed.

 < Ti, Xj, V1, V2>. Transaction Ti has performed a write on

data item Xj . Xj had value V1 before the write, and will

have value V2 after the write.

 < Ti abort>. Transaction Ti has aborted.

Whenever a transaction performs a write, it is essential that the

log record for that write be created before the database is

modified. Once a log record exists, we can output the

modification to the database if that is desirable. Also, we have

the ability to undo[6,14] a modification that has already been

output to the database. We undo it by using the old-value field

in log records. For log records to be useful for recovery from

system and disk failures, the log must reside in stable storage.

5.1. Deferred Database Modification

The deferred-modification technique[1,8] ensures atomicity of

transaction by recording all database modifications in the log,

but postponing (or deferring) the execution of all write

operations of a transaction until the transaction partially

commits (i.e. the final action of the transaction has been

executed). When a transaction partially commits, the

information on the log is used in executing the deferred writes.

Pradip R. Patel, IJECS Volume 4 Issue 4 April, 2015 Page No.11482-11486 Page 11484

If the system crashes before the transaction completes its

execution, or if the transaction aborts, then the information on

the log is simply ignored.

The execution of transaction Ti proceeds as follows. Before Ti

starts its execution, a record <Ti start> is written to the log. A

write(X) operation by Ti results in the writing of a new record

to the log. Finally, when Ti partially commits, a record <Ti

commit> is written to the log. When transaction Ti partially

commits, the records associated with it in the log are used in

executing the deferred writes. Since a failure may occur while

this updating is taking place, we must ensure that, before the

start of these updates, all the log records are written out to

stable storage. Once they have been written, the actual updating

takes place, and the transaction enters the committed state.

Observe that only the new value of the data item is required by

the deferred modification technique. Thus, we can simplify the

general update-log record structure that we saw in the previous

section, by omitting the old-value field.

Let’s reconsider our simplified banking system. Let T0 be a

transaction that transfers Rs.100 from account X to account Y.

And T1 be a transaction that withdraws Rs.50 from account Z.

T0: read(X);

X := X − 100;

write(X);

read(Y);

Y := Y + 100;

write(Y).

T1: read(Z);

Z := Z − 50;

write(Z).

Suppose that these transactions are executed serially, in the

order T0 followed by T1, and that the values of accounts X, Y,

and Z before the execution took place were Rs.500, Rs.1000,

and Rs.1500, respectively. The portion of the log containing

the relevant information on these two transactions appears in

Figure 2.

<T0 start>

<T0, X, 400>

<T0, Y, 1100>

<T0 commit>

<T1 start>

<T1, Z, 1450>

<T1 commit>

Figure 2: Database log corresponding.

There are various orders of execution of T0 and T1 in which the

actual outputs can take place to both the database system and

the log. One such order appears in Figure 3.

 Log Database

<T0 start>

<T0, X, 400>

<T0, Y, 1100>

<T0 commit>

X = 400

Y = 1100

<T1 start>

<T1, Z, 1450>

<T1 commit>

Z = 1450

Figure 3: System Log and Database

Note that the value of A is changed in the database only after

the record <T0, X, 400> has been placed in the log. Using the

log, the system can handle any failure that results in the loss of

information on volatile storage. The recovery scheme[14] uses

the following recovery procedure:

 redo(Ti) sets the value of all data items updated by

transaction Ti to the new values.

The set of data items updated by Ti and their respective new

values can be found in the log. After a failure, the recovery

subsystem consults the log to determine which transactions

need to be redone. Transaction Ti needs to be redone if and

only if the log contains both the record <Ti start> and the

record <Ti commit>. Thus, if the system crashes after the

transaction completes its execution, the recovery scheme uses

the information in the log to restore the system to a previous

consistent state after the transaction had completed.

5.2. Immediate Database Modification

The immediate-modification technique [1] allows database

modifications to be output to the database while the transaction

is still in the active state. In the event of a crash or a transaction

failure, the system must use the old-value field of the log

records to restore the modified data items to the value they had

prior to the start of the transaction. Since the information in the

log is used in reconstructing the state of the database, we

cannot allow the actual update to the database to take place

before the corresponding log record is written out to stable

storage. We therefore require that, before execution of an

output(Y) operation, the log records corresponding to Y be

written onto stable storage. As an illustration, let us reconsider

our simplified banking system, with transactions T0 and T1

executed one after the other in the order T0 followed by T1. The

portion of the log containing the relevant information

concerning these two transactions appears in Figure 4.

<T0 start>

<T0, X, 500, 400>

<T0, Y, 1000, 1100>

<T0 commit>

<T1 start>

<T1, Z, 1500, 1450>

<T1 commit>

Figure 4: System Log Corresponding

Figure 5 shows one possible order in which the actual outputs

took place in both the database system and the log as a result of

the execution of T0 and T1.

 Log Database

<T0 start>

<T0, X, 500, 400>

<T0, Y, 1000, 1100>

X = 400

Y = 1100

<T0 commit>

<T1 start>

<T1, Z, 1500, 1450>

Z = 1450

<T1 commit>

Figure 5: State of System Log and Database

Pradip R. Patel, IJECS Volume 4 Issue 4 April, 2015 Page No.11482-11486 Page 11485

Using the log, the system can handle any failure that does not

result in the loss of information in nonvolatile storage. The

recovery scheme uses two recovery procedures:

 undo(Ti) restores the value of all data items updated by

transaction Ti to the old values.

 redo(Ti) sets the value of all data items updated by

transaction Ti to the new values.

After a failure has occurred, the recovery scheme consults the

log to determine which transactions need to be redone, and

which need to be undone. Transaction Ti needs to be undone if

the log contains the record <Ti start>, but does not contain the

record <Ti commit>. Ti needs to be redone if the log contains

both the record <Ti start> and the record <Ti commit>.

5.3. Checkpoints

After system failure we must search entire log to determine

transactions that need to be redone and undone. This search

process becomes time consuming. Second, most of the

transactions that need to be redone have already written their

updates into the database. It will cause recovery to take longer.

Checkpoints[1, 11] reduce these problems. The system

periodically writes into log a <checkpoint> record. It means all

the previous logs are removed and stored permanently in

storage disk. Checkpoint declares a point before which the

DBMS was in consistent state and all the transactions were

committed.

During recovery, recovery scheme examine the log to

determine the most recent transaction Ti that started executing

before the most recent checkpoint took place by searching the

log backward, from the end of the log, until it finds the first

<checkpoint> record; then it continues the search backward

until it finds the next <Ti start> record. This record identifies a

transaction Ti. The redo and undo operations need to be

applied to only transaction Ti and all transactions Tj that started

executing after transaction Ti. Let us denote these transactions

by the set T. The remainder of the log can be ignored and

removed. For the immediate-modification technique, recovery

operations are: For all transactions Tk in T if <Tk commit>

record is not in the log, execute undo(Tk) and if <Tk commit>

appears in the log, execute redo(Tk). Obviously, the undo

operation does not need to be applied for deferred-modification

technique.

6. Shadow Paging

An alternative to log-base recovery is to use a system of

shadow paging[11]. This is where the database is divided into

pages that may be stored in any order on the disk. In order to

identify the location of any given page, we use something

called a page table as in Figure 6. The page table[1] has

multiple entries - one for each database page. Each entry

contains a pointer to a page on disk. The first entry contains a

pointer to the first page of the database, the second entry points

to the second page, and so on. Figure 6 shows that the logical

order of database pages does not need to correspond to the

physical order in which the pages are placed on disk.

Figure 6: Sample Page Table.

During the life of a transaction two page tables are maintained,

one called a shadow page table and current page table. When a

tranasaction begins both of these page tables are identical.

During the lifetime of a transaction the shadow page table

doesn't change at all. However during the lifetime of a

transaction changes may be made to current page table.

Figure 7: Shadow and Current Page Tables.

Looking at Figure 7 we see how these tables appear during a

transaction. As we can see the shadow page table shows the

state of the database just prior to a transaction, and the current

page table shows the state of the database during or after a

transaction has been completed. We now have a system

whereby if we ever want to undo the actions of a transaction all

we have to do is to recover the shadow page table to be the

current page table. As such this makes the shadow page table

particularly important, and so it must always be stored on

stable storage. On disk we store a single pointer location that

points to the address of the shadow page table. This means that

to swapt the shadow table for the current page table (commiting

the data) we just need to update this single pointer. Figure 7

shows the shadow and current page tables for a transaction

performing a write to the second and fifth pages of a database.

To commit a transaction, we must do the following: First,

ensure that all buffer pages in main memory that have been

changed by the transaction are output to disk. Second, output

the current page table to disk. Finally, output the disk address

of the current page table to the fixed location in stable storage

containing the address of the shadow page table. This action

overwrites the address of the old shadow page table. Therefore,

the current page table has become the shadow page table, and

the transaction is committed.

Pradip R. Patel, IJECS Volume 4 Issue 4 April, 2015 Page No.11482-11486 Page 11486

Shadow paging offers several advantages over log-based

techniques as described in [1].

 Reduced Overhead: The overhead of log-record output is

eliminated.

 Fast Recovery: Recovery [11] from crashes is faster since no

undo or redo operations are needed.

However, as explained in [1], there are some drawbacks of this

technique:

 Commit overhead: The commit of a single transaction using

shadow paging requires multiple blocks to be output—the

actual data blocks, the current page table, and the disk

address of the current page table. Log-based schemes need

to output only the log records, which, for typical small

transactions, fit within one block.

 Data fragmentation: Shadow paging causes database pages

to change location when they are updated. As a result we

lose the locality property of the pages.

 Garbage collection: Each time that a transaction commits,

the database pages containing the old version of data

changed by the transaction become inaccessible. Such pages

are considered garbage, since they are not part of free space

and do not contain usable information. Periodically, it is

necessary to find all garbage pages, and to add them to the

list of free pages. This process, called garbage

collection[9,10], imposes additional overhead and

complexity on the system.

7. Conclusion

Database system is an important part of computer system that is

used to store data. There are mainly three ways that a system

fails: transaction failures, system failures, and media failures.

Storage media which is used to store database can be classified

as volatile, non-volatile and stable storage. Information stored

in volatile storage does not usually survive system crashes

while information stored in non-volatile storage survives

system crashes. Information residing in stable storage is never

lost. When failure occurs, information stored in database is lost

and database becomes inconsistent. Recovery scheme is an

essential part of a database system which can restore the

database to the consistent state that existed before the failure.

Log-based schemes and Shadow paging are widely used

recovery techniques. There are two log-based schemes,

deferred-modifications and immediate-modifications. In

comparison to log-based schemes, shadow paging technique is

fast and has reduced recovery overhead. However, shadow-

page technique has several drawbacks like large commit

overhead, data fragmentation and creation of garbage data.

References

[1] Silberschatz, A., H.F. Korth and S. Sudarshan. Database

System Concepts. Boston, MA, McGraw-Hill, 2002.

[2] Philip A. Bernstein and Eric Newcomer, Principles of

Transaction Processing, Morgan Kaufmann Publishers.

[3] Vijay Kumar and Albert Burger, “Performance

Measurement of Main Memory Database Recovery

Algorithms Based on Update-in-Place and Shadow

Approaches”, IEEE Transactions on Knowledge and Data

Engineering, Vol 4, No. 0, December 1992.

[4] Date, C.J., Database in Depth, O'Reilly Publication, 2005.

[5] Paul Beynon, Davies, Database Systems - Third Edition.

Published by Palgrave Macmillan, 2004.

[6] Philip Bohannon, Rajeev Rastogi, S. Seshadri, Avi

Silberschatz, Fellow, IEEE, and S. Sudarshan, “Detection

and Recovery Techniques for Database Corruption”,

IEEE Transactions On Knowledge And Data Engineering,

Vol. 15, No. 5, September/October 2003.

[7] J. Eliot and B. Moss, “Log-Based Recovery for Nested

Transactions”, Department of Computer and Information

Science, University of Massachusetts, Amherst.

[8] Asit Dan, Member, IEEE, Philip S. Yu, Fellow, IEEE, and

Anant Jhingran, “Recovery Analysis of Data Sharing

Systems under Deferred Dirty Page Propagation

Policies”, IEEE Transactions on Parallel And Distributed

Systems, Vol. 8, No. 7, July 1997.

[9] E.N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang

And David B. Johnson, “A Survey Of Rollback-Recovery

Protocols In Message-Passing Systems”, ACM.

[10] Jonathan E. Cook, Alexander L. Wolf and Benjamin G.

Zorn, “A Highly Effective Partition Selection Policy for

Object Database Garbage Collection”, IEEE Transactions

on Knowledge and Data Engineering, Vol. 10, No. 1,

January/February 1998.

[11] Victor F. Nicola, And Johannes M. Van Spanje,

“Comparative Analysis of Different Models of

Checkpointing and Recovery”, IEEE Transactions on

Software Engineering, Vol. 16, No. 8, August 1990.

[12] Min-Sheng Lin and Deng-Jyi Chen, “The Reliability

Problem in Distributed Database Systems”, International

Conference on Information, Communications and Signal

Processing, September 1997.

[13] Jim Gray and Andreas Reuter, Transaction Processing:

Concepts and Techniques, Morgan Kaufmann, 1993.

[14] An Oracle White Paper, “Very Large Database (VLDB)

Backup & Recovery Best Practices”, July 2008.

