

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 6 June 2013 Page No. 2098-2101

Surendra Singh Rajpoot, IJECS Volume 2 Issue 6 June, 2013 Page No.2098-2101 Page 2098

Design and implementation of efficient 32-bit floating

point multiplier using Verilog

Surendra Singh Rajpoot
1
, Nidhi Maheshwari

2
, D.S. Yadav

3

1Lord Krishna College of technology

Rau-Pithampur By-pass road,

Opp.STI(I)Ltd. Indore(MP), India

errajpoot@email.com
2 Lord Krishna College of technology

Rau-Pithampur By-pass road,

Opp.STI(I)Ltd. Indore(MP), India

dsyadav@gmail.com
3 Lord Krishna College of technology

Rau-Pithampur By-pass road,

Opp.STI(I)Ltd. Indore(MP), India

Er.nidhi17@ymail.com

Abstract: A Binary multiplier is an integral part of the arithmetic logic unit (ALU) subsystem found in many processors. Floating Point

Arithmetic is extensively used in the field of banking, tax calculation, currency conversion, and other financial areas including broadcast,

musical instruments, conferencing, and professional audio. Many of these applications need to solve sparse linear systems that use fair

amounts of matrix multiplication.

The objective of this thesis is to design and implement single precision (32-bit) floating-point cores for multiplication. The multiplier

conforms to the IEEE 754 standard for single precision. The IEEE Standard for Binary Floating Point Arithmetic (IEEE 754) is the most

widely used standard for floating point computation, and is followed by many CPU and FPU implementation. The standard defines formats

for representing floating point numbers (including negative zero and denormal numbers) and special values (infinites and NaNs) together

with a set of floating point operation that operate on these values. It also specifies four rounding modes and five exceptions.

In this thesis, I have used VERILOG as a HDL and Xilinx ISE has been synthesized on same tool. Timing and correctness properties were

verified. Instead of writing Test- Benches & Test-Cases we used Wave-Form Analyzer which can give a better understanding of Signals &

variables and also proved a good choice for simulation of design. In order to perform floating point multiplication a VERILOG program is

realized. The fixed-point design is extended to support floating-point multiplication by adding several components including exponent

generation, rounding, shifting, and exception handling.

Keywords: Binary multiplier, denormal numbers, IEEE 754, NaNs, Xilinx ISE

1. General

Many p eo p le consider floating-point arithmetic an esoteric

subject. This is rather surprising because floating-point is

ubiquitous in computer systems. Almost every language has a

floating-point data type; computers from PC’s to

supercomputers have floating-point accelerators; most

compilers will be called upon to compile floating-point

algorithms from time to time; and virtually every operating

system must respond to floating-point exceptions such as

overflow. There are some aspects of floating point that have a

direct impact on designers of computer systems. It begins

with background on floating-point representation and

rounding error, continues with a discussion of the IEEE

floating-point standard, and concludes with numerous

examples of how computer builders can better support

floating-point.[1]

Every computer has a floating point processor or a dedicated

accelerator that fulfills the requirements of precision using

detailed floating point arithmetic. The main applications of

floating points today are in the field of medical imaging,

biometrics, motion capture and audio applications, including

broadcast, conferencing, musical instruments and professional

audio. Their importance can be hardly over emphasized

because the performances of computers that handle such

applications are measured in terms of the number of floating

point operations they perform per second. [2]

2. Introduction

There are several ways to represent real numbers on

computers. Fixed point places a radix point somewhere in the

middle of the digits, and is equivalent to using integers that

represent portions of some unit. For example, one might

represent 1/100ths of a unit; if you have four decimal digits,

you could represent 10.82, or 00.01. Another approach is to

use rational, and represent every number as the ratio of two

integers. [18]

Surendra Singh Rajpoot, IJECS Volume 2 Issue 6 June, 2013 Page No.2098-2101 Page 2099

Floating-point representation - the most common solution -

basically represents reals in scientific notation. Scientific

notation represents numbers as a base number and an

exponent. For example, 123.456 could be represented as

1.23456 × 10
2
. In hexadecimal, the number 123.abc might be

represented as 1.23abc × 16
2
.

Floating-point solves a number of representation problems.

Fixed-point has a fixed window of representation, which

limits it from representing very large or very small

numbers. Also, fixed-point is prone to a loss of precision

when two large numbers are divided.

Floating-point, on the other hand, employs a sort of

"sliding window" of precision appropriate to the scale of

the number. This allows it to represent numbers from

1,000,000,000,000 to 0.0000000000000001 with ease.

3. IEEE 754 Floating Point Standard

IEEE 754 floating point standard is the most common

representation today for real numbers on computers. The

IEEE (Institute of Electrical and Electronics Engineers) has

produced a Standard to define floating-point representation

and arithmetic. Although there are other representations, it is

the most common representation used for floating point

numbers. The standard brought out by the IEEE come to be

known as IEEE 754. The IEEE Standard for Binary Floating-

Point Arithmetic (IEEE 754) is the most widely- used

standard for floating point computation, and is followed by

many CPU and FPU implementations.[1] The standard

defines formats for representing floating-point numbers

including negative numbers and denormal numbers special

values i.e. infinities and NAN’s together with a set of floating-

point operations that operate on these values. It also specifies

four rounding modes which are round to zero, round to

nearest, round to infinity and round to even and five

exceptions including when the exceptions occur, and what

happens when they do occur. Dealing with fixed-point

arithmetic will limit the usability of a processor. If

operations on numbers with fractions (e.g. 10.2445), very

small numbers (e.g. 0.000004), or very large numbers (e.g.

42.243x10
5

) are required, then a different one representation is

in order is the floating-point arithmetic.[14] The floating point

is utilized as the binary point is not fixed, as is the case in

integer (fixed-point) arithmetic. In order to get some of the

terminology out of the way, let us discuss a simple floating-

point number, such as -2.42x10
3

. The '-' symbol indicates the

sign component of the number, while the '242' indicate the

significant digits component of the number, and finally the '3'

indicates the scale factor component of the number. It is

interesting to note that the string of significant digits is

technically termed the mantissa of the number, while the scale

factor is appropriately called the exponent of the number.

The general form of the representation is the following:

 (-1)
S
* M * 2

E
(1)

Where

S represents the sign bit,

M represents the mantissa and

E represents the exponent

4. FLOATING POINT ARITHMETIC

The IEEE Standard for Binary Floating-Point Arithmetic

(IEEE 754) is the most widely- used standard for floating-

point computation, and is followed by many CPU and FPU

implementations.[1] The standard defines formats for

representing floating-point number (including ±zero and

denormals) and special values (infinities and NaNs) together

with a set of floating-point operations that operate on

these values. It also specifies four rounding modes and

five exceptions.

IEEE 754 specifies four formats for representing floating-

point values: single-precision (32-bit), double-precision (64-

bit), single-extended precision (≥ 43-bit, not commonly

used) and double-extended precision (≥ 79-bit, usually

implemented with 80 bits). Many languages specify that IEEE

formats and arithmetic be implemented, although sometimes it

is optional. For example, the C programming language,

which pre-dated IEEE 754, now allows but does not require

IEEE arithmetic (the C float typically is used for IEEE single-

precision and double uses IEEE double-precision).[18]

5. Single Precision Floating Point Numbers

The single-precision number is 32 bit wide. The single-

precision number has three main fields that are sign,

exponent and mantissa. The 24-bit mantissa (the leading

one is implicit) can approximately represent a 7-digit decimal

number, while an 8-bit exponent to an implied base of 2

provides a scale factor with a reasonable range. Thus, a total of

32 Bit is needed for single-precision number representation.

To achieve a bias equal to 2
n−1

− 1 is added to the actual

exponent in order to obtain the stored exponent. This equals

127 for an eight-bit exponent of the single-precision format.

The addition of bias allows the use of an exponent in the

range from −127 to +128, corresponding to a range of 0-255

for single precision number. The single-precision format

offers a range from 2
−127

to 2

+127

, which is equivalent to 10
−38

to 10
+38

Sign: 1-bit wide and used to denote the sign of the number i.e.

0 indicate positive number and 1 represent negative number.

Exponent: 8-bit wide and signed exponent in excess-127

representation.

Mantissa: 23-bit wide and fractional component.

Figure 1: Single-precision floating-point number

representation

The excess-127 representation mentioned when discussing the

exponent portion above, is utilized to efficiently compare the

relative sizes of two floating point numbers. Instead of storing

the exponent (E) as a signed number, we store its unsigned

integer representation (E’ = E +127). This gives us a range for

Surendra Singh Rajpoot, IJECS Volume 2 Issue 6 June, 2013 Page No.2098-2101 Page 2100

E’ of 0 <= E’ <= 255. While the 0 and 255 end values are

used to represent special numbers (exact 0, infinity and

denormal numbers), the operating range of E0 becomes 1 <=

E’<=" 254, thus, limiting the range of E to -126<= E <= 127.

In double-precision numbers, an excess-1023 representation is

utilized.

6. Ranges Of Floating-Point Numbers

Table 1.1: Effective Range of single precision and double

precision float numbers

7. Floating Point Multiplication

Given two FP numbers n1 and n2, the product of both, denoted

as n, can be expressed as:

 n = n1 × n2

 = (-1)
S1

. p1. 2
E1

× (-1)
S2

. p2.2
E2

 = (-1)
S1+S2

. (p1.p2). 2
E1+E2

 (2)

This means that the result of multiplying two FP numbers can

be described as multiplying their significands and adding their

exponents.[14] The resultant sign S is S1 +S2, the resultant

significand p is the adjusted product of p1. p2 and the

resultant exponent E is the adjusted E1+E2+bias. In order

to perform floating-point multiplication, a simple algorithm is

realized:

 Add the exponents and subtract 127.

 Multiply the mantissas and determine the sign of

 the result.

 Normalize the resulting value, if necessary.

8. Number Representation Using Single

Precision Format

Let us try and represent the decimal number (-0.75)10 in IEEE

floating-point format. First of all, we notice that (-0.75)10 = (-

3/4)10.

In binary notation, we have (-0.11)2 = (-0.11)2×2
0
 = (-1.1)2×2

-1

Referring to equation (2), we can represent our number as:

(-1)
1
 * (1 + .100000000000000000000002) * 2

126-127

Thus, our single-precision representation of the

number is given as

(10111111010000000000000000000000)2,where The sign bit

is (1)2,for negative numbers; The exponent is (01111110)2,

to represent (126)10, The mantissa is

(10000000000000000000000)
2
, to represent the fractional

part (.1)2.

9. Conclusion

Single precision floating point multiplier is designed and

implemented using xil inx in this p a p e r . The designed

multiplier conforms to IEEE 754 single precision floating

point standard. In this implementation exceptions (like

invalid, inexact, infinity, etc) are considered. In this

implementation rounding modes like round to positive

infinity, round to negative infinity, round to zero and round

to even. The designed is verified using fpu_test test bench.

The design is also verified for overflow and underflow cases.

References

1. IEEE standard for binary-floating point arithmetic,

ANSI/IEEE Std 754-1985, The Institute of

Electrical and Electronic Engineers Inc., New York,

August 1985.

2. David Goldberg: What Every Computer Scientist

Should Know About Floating- Point Arithmetic,

1991.

3. I. Koren, Computer Arithmetic Algorithms, Second

Edition, prentice Hall, 2002.

4. An ANSI/ IEEE Standard for Radix-Independent

Floating-Point Arithmetic, Technical Committee on

microprocessor of IEEE computer society, October,

1987.

5. Steve Hollasch, IEEE Standard 754 Floating Point

Numbers, February 2005.

6. BROWN, Stephen D. Fundamentals of Digital Logic

with VHDL design. Boston: McGraw-Hill, 2000.

7. John L Hennesy & David A. Patterson ‘Computer

Architecture A Quantitative Approach’ Second edition;

A Harcourt Publishers International Company

8. J. Bhasker, A VHDL Primer, Third Edition, Pearson,

1999.

9. M. Ercegovac and T. Lang, Digital Arithmetic,

Morgan Kaufmann Publishers, 2004.

10. John. P. Hayes, ‘Computer Architecture and

Organization’, McGraw Hill, 1998.

11. Peter J . Ashenden, The D e s i g n e r ’ s Guide to

VHDL, Morgan Kaufmann Publishers, 95 Inc. ,

1996.

12. Prof. W. Kahan, Lecture Notes on the Status of IEEE

Standard 754 for Binary Floating-Point Arithmetic.

Link:

www.cs.berkeley.edu/~wkahan/ieee754status.html

13. Wikipedia, the free encyclopedia, IEEE 754-1985.

Link: http://en.wikipedia.org/wiki/floating

_point.html

14. Behrooz Parhami, Computer Arithmetic, Algorithms

and Hardware Design Oxford University Press.2000.

15. IEEE Floating Point Representation of Real

Number, Fundamentals of Computer Science. Link:

 http://www.math.grin.edu/~stone/courses/fundamenta

ls/ieee- reals.html

16. M. J. Flynn and S. F. Oberman, Advanced Computer

Arithmetic Design, John Wiley and Sons, 2001.

17. N. Weste, D. Harris, CMOS VLSI Design, Third

Edition, Addison Wesley, 2004.

 Binary Decimal

Single ± (2-2
-23

) × 2
127

~ ± 10
38

Double ± (2-2
-32

) × 2
1023

 ~ ± 10
308

http://www.cs.berkeley.edu/~wkahan/ieee754status.html
http://en.wikipedia.org/wiki/floating
http://en.wikipedia.org/wiki/floating
http://www.math.grin.edu/~stone/courses/fundamentals/ieee-%20reals.html
http://www.math.grin.edu/~stone/courses/fundamentals/ieee-%20reals.html

Surendra Singh Rajpoot, IJECS Volume 2 Issue 6 June, 2013 Page No.2098-2101 Page 2101

18. Beebe, H.F.Nelson, Floating Point Arithmetic,

Computation in Modern Science & Technology,

December, 2007.

19. P. Karlstrom, A. Ehliar, High Performance Low

Latency Floating Point Multiplier, November 2006

20. www.ieee.org

Author Profile

Surendra Singh Singh received the B.E. degree in Electronics and

communication Engineering from Ujjain engineering college Ujjain in

2008 and persuing m.tech degree in session (2011-2013) from Lord

Krishna college of Technology. This is my research paper.

http://www.ieee.org/

