

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 6 June, 2013 Page No. 2072-2085

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2072

Development & Calibration of CAN for Designing

Vehicle Electronic Architecture

Rahul B. Adsul
1
, Prof. Mrs. S.D. Joshi²

1AM, CIS Technologies (India) Pvt. Ltd., Pune, Maharashtra, India

rahulbadsul@gmail.com

²Professor, Dept. of Electronics & Telecommunication, PVPIT,

University of Pune, Maharashtra, India.

s.d.joshi@hotmail.com

Abstract: This literature is in the field of communication networks where different Electronic Control Units (ECUs) communicate with

each other over Controller Area Network (CAN) protocol. Typically these types of CAN networks are used in automotive vehicles, plant

automations, etc. This proposed method is applicable in all such applications where controller area network is used as backbone electrical

architecture.

This literature proposes a new method of CAN signal packing into CAN frames so that network bus-load is minimized so that more number

of CAN signals can be packed and more number of ECUs can be accommodated within a CAN network. The proposed method also ensures

that the age of each CAN signal is minimized and all CAN signals reach the intended receiving ECUs within their maximum allowed age.

Typically network designers are forced to design and develop multiple sub-networks and network gateways to get rid of network bus-load. As

the proposed method intends to minimize network bus-load, the requirement of gateways just to reduce bus-load will be avoided.

The implementation of CAN messages has been a critical aspect of the ECU development process in recent years. The traditional approach

generates more inconsistencies between the specification and the software coding (implementation), probably coding errors, and variable

reproducibility of the implementation, depending on the ECU platform. Therefore in order to achieve an efficient development, the use of a

high abstraction level of the CAN protocol is essential.

The proposed method also proposes method for assignment of CAN Identifiers in each CAN frame by introducing different sub-fields within

the CAN Identifiers. This will help to reduce the delay in the CAN frames due to arbitration loss in the network. The proposed methods will

minimize the ECU loads network due to CAN frame reception for all ECUs in the CAN by minimizing the number of CAN frames to be

received by each ECU in the network and also by enabling hardware filtering of CAN frames by receiving ECUs due to different sub-fields

within the CAN Identifier.

Keywords: Electronic Control Unit, Automotive Domain, CAN Identifiers, Frames.

Introduction

This literature relates to communication networks where

different electronic control units (ECUs) communicate with

each other over Controller Area Network (CAN) protocol.

The present paper talks about a new design method for CAN

signal packing into CAN frames, assigning CAN Identifiers

into CAN frames so that network bus-load and ECU load

can be minimized.

Typically these types of CAN networks are widely used in

automotive vehicles, plant automations, etc. The proposed

method is applicable in all such applications where

controller area network is used as backbone electrical

architecture for sharing electrical signals. With the advent of

distributed real-time control functionalities the need has

arisen for reliable communication network systems where

different Electronic Control Units (ECUs) are connected

with each other through Controller Area Network (CAN

network) buses for sharing hundreds of critical signals.

These CAN signals are packed into CAN frames. These

CAN frames in turn are transmitted and received by

different ECUs in the network. Typical applications of such

network systems are widely seen in automotive domain,

where in-vehicle networks are used as the backbone of all

distributed control functions.

Existing methodologies for CAN signal packing mainly

group the signals based on the periodicity of these signals;

so that the signals with same periodicity and transmitted by

same ECU are grouped together. Then signals which are in

the same group are packed into a CAN frame until the frame

is fully packed. If the first CAN frame is fully packed, then

mailto:rahulbadsul@gmail.com
mailto:s.d.joshi@hotmail.com

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2073

another CAN frame is created and packed with remaining

signals and so on. After all of the CAN frames are created,

lower value of “Frame Identifier” is assigned to CAN

frames with lower periodicity (or more frequent CAN

frames) to allocate higher priority for that frame.

The problem associated with existing practice of CAN

signal packing is that the bus-load of the network and ECU

load are not optimized. So, the increase in number of CAN

signals results in increase in network bus-load and ECU

load. This results in unnecessary increase in sub-networks

and gateways in the network architecture which in turn

increases the cost.

The CAN Calibration Protocol, which is commonly referred

to as CCP, is essentially a software interface used to

interconnect a development tool with an Electronic Control

Unit (ECU). The interface defines methods to handle

module calibration, measurement data acquisition, and flash

programming activities.

Whether the complete CCP interface or a portion of it is

supported by the tool or implemented in the ECU depends

upon the module developer's needs. Based on the Controller

Area Network (CAN) protocol, CCP places no limitations

on the choice of physical layer and the system-selected

communication bit rate.

CAN Calibration Protocol is capable of supporting both a

single point-to-point connection and a networked connection

to an entire distributed system. This means that any

combination of calibration, measurement data acquisition,

and flash programming activities are possible for a single

module or for any portion of modules across a CAN

network.

There is yet another problem associated with existing

method. As the signal packing is not optimized, the bus-load

is increased. This increase in bus-load results in higher

latency for the CAN signals. Higher latency value for CAN

signals affects the performance of the distributed functions

which leads to customer dissatisfaction. Existing methods

for assignment of CAN Identifiers into different CAN

frames are not optimized. It classifies the available range of

CAN Identifiers based on the periodicity of CAN frames

and then randomly assigns the CAN Identifiers based on the

periodicity of CAN frames. These methods leads to

arbitration loss of CAN frames in CAN network and thus

leads to message loss.

In recent years, the Commercial Vehicle OEM has been

offering many technical solutions to satisfy customer needs

and to increase the efficiency and productivity of trucks.

The new solutions have been realized by using Electronic

Control Units. All ECUs are linked together via a unique

communication interface. The information which each ECU

needs to function correctly is received from other system

components and other ECUs. In addition, each ECU puts

data about its own status on the network for reception and

evaluation by other control units. For example, a vehicle

computer can read the current engine speed from the engine

controller and provides the relevant data to a different ECU.

The OEM that elaborates the ECU network has the big task

of requiring all suppliers to provide a common and shared

standard protocol in order to improve the system‟s

robustness and diagnostics.

The CAN standard is well established and has been refined

as the standard de facto for communication between ECUs.

The CAN network implementation typically includes a

microprocessor with an integrated CAN protocol controller.

Usually, each supplier provides a CAN Driver, based on

OEM-specific requirements in terms of CAN Controller

Initialization, Reception and Transmission of CAN

messages, CAN Messages scheduling, CAN Gateway

functions and more (in general functions relevant to

Network Management).

Detailed Description:

Typically, different Electronic Control Units (ECUs) are

connected with each other over CAN network. Different

ECUs share their data with each other over this CAN

network in form of CAN signals. For example, Engine

Control Module (ECM) is connected in the CAN bus. ECM

has the data for current engine speed. This data needs to be

shared with other ECUs over CAN network. Then ECM

needs to transmit current engine speed as one of the transmit

signals over CAN bus and other ECUs need to receive this

CAN signal.

Typically, ECUs transmit and receive CAN frames over the

network. So, CAN signals need to be packed in CAN frames

such that the ECUs can share the signals over CAN network.

This literature proposes optimized method for packing these

CAN signals into CAN frames.

Terminologies -

Following terminologies are defined to explain the proposed

method.

Age of a signal:

Age of a signal is defined as the time between the following

two events:

• The time instant when a new value of the signal is

available with the application in transmitting ECU.

• The time instant when signal is consumed by the

application in receiving ECU.

As shown in Fig. 1, the Age of a signal is the summation of

the following:

• Time delay in the transmitting ECU after generation of

new signal value and before queuing of CAN frame for

transmission

• Time required to transmit the frame in the CAN network

(considering time delay due to arbitration loss in the CAN

network)

• Time delay in the receiving ECU after reception of CAN

frame and before consumption of signal value by the

application in receiving ECU

Figure 1: Age of a signal in CAN network

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2074

Max allowed Age of a signal:

It is the maximum allowed delay time by which the latest

value of a signal generated in transmitting ECU can be

consumed by the application in receiving ECU without any

degradation in distributed functionality.

OBJECTIVES: The proposed method aims to pack the

transmit signals into CAN frames such that the following

two objectives are satisfied:

Objective 1: Network average bus-load is minimized.

Every transmit CAN frame contributes to the bus-load.

Average bus-load contributed by one transmit CAN frame is

.....(1)

Average bus-load contributed by every individual CAN

Frame needs to be added for all the Frames in the network to

arrive at the average bus-load of the network.

So, we can conclude that the average bus-load of a network

is directly proportional to the number of CAN Frames in the

network. More the number of Frames more is the bus-load.

We can also say that lower the periodicity of a CAN Frame

higher is the average bus-load of network.

Objective 2: ECU load due to CAN frame reception in the

network is minimized.

ECU load due to CAN frame reception is directly

proportional to the number of CAN frames which that ECU

receives.

For example, if any ECU needs to receive 7 different CAN

signals from the network then

▪ The ECU load due to CAN frame reception will be

maximum if the ECU needs to receive 7 different CAN

frames for 7 different CAN signals (i.e. all different signals

are packed in different frames)

▪ The ECU load due to CAN frame reception will be

minimum if the ECU needs to receive only 1 CAN frame

(i.e. all 7 signals are packed within 1 CAN frame).

So, we can conclude that ECU load due to CAN frame

reception is maximum if all the intended receive signals are

packed in different CAN frames. To minimize ECU load

number of receive CAN frames by any ECU in the network

needs to be minimized. Also, the CAN Identifiers shall be

assigned in the CAN frames in such a way that any

receiving ECU is able to filter the intended receive CAN

frame correctly through hardware filtering.

Proposed Method:

The proposed method is explained step by step to meet the

objectives of this literature.

Step 1

Names of all CAN signals transmitted by different ECUs in

the network need to be listed first. Each signal which is

transmitted by any ECU in the network will be received by

one or more ECUs in the network. If one signal is received

by more than one ECU, then there is possibility that the

functional requirement for the same signal may differ

among different receiving ECUs. So, the following signal

properties for each transmit signal need to be defined in the

following manner:

• Physical range of transmit signal: This shall be defined

as the maximum of all “physical range” requirements from

all receiving ECUs for this signal.

• Physical resolution per bit: This shall be defined as the

minimum of all “physical resolution per bit” requirements

from all receiving ECUs for this signal.

• Maximum allowed Age: This shall be defined as the

minimum of all “max allowed Age” requirements from all

receiving ECUs for this signal.

So, if the same signal is needed by different receiving ECUs

and functional requirements are different for these receiving

ECUs, the transmit signal shall not be duplicated to meet

separately different receiving ECU's requirements; the

properties of transmit signal shall be chosen such that it

meets requirements of all receiving ECUs to avoid

duplication.

Step 2

The length and periodicity of each transmit signal needs to

be derived as follows. This is applicable for all periodic

transmit signals.

 ...(2)

 …. (3)

Factor of safety is a configurable value, by default it shall be

3. For critical signals, Factor of safety shall be 5. So, the

proposed method suggests periodicity (or cycle time) of

each transmit signal to be at most one third the max allowed

age for that signal. This will ensure that each transmit signal

will get consumed by receiving ECU within max allowed

age of the signal.

As CAN is real-time in nature, the Transmit-Signal Model

of any ECU may demand for Event-driven or Mixed

(Eventdriven + Periodic) CAN signals to be transmitted by

that ECU. For such cases of Event driven or Mixed CAN

signals, Virtual Periodicity shall be calculated from the max

allowed age of these signals, as mentioned in Eq. (3). This

method of computing Virtual Periodicity will simplify the

modeling of Event-driven and Mixed CAN signals in real-

time distributed control systems.

Step 3

Assign priority for each transmit signal. Higher priority shall

be given to critical signals. Typically 4 different levels of

priority need to be assigned where priority 1 is the highest

priority and priority 4 is the lowest priority. Following are

the different priorities for CAN signals:

• Priority 1: All safety critical signals, security related

signals, interface torque control signals and associated

health status signals conveying plausibility or implausibility

of different control signals shall be given the highest

priority.

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2075

• Priority 2: All body function related control signals and

associated health status signals shall be given next higher

priority (i.e. priority level 2).

• Priority 3: All comfort and convenience function related

signals and associated health status signals shall be given

next higher priority (i.e. priority level 3).

• Priority 4: All other signals (for example information

related signals, network management related signals,

diagnostic signals, proprietary signals, development signals,

etc) shall be assigned the lowest priority.

Step 4

Packing of CAN signals needs to be done separately for

different priority groups of signals. First all CAN signals

from highest priority group need to be packed in the CAN

frames. Refer Fig. 2. This figure shows a 3 dimensional plot

of which X axis represents the list of transmitting ECUs, Y

axis represents the list of receiving ECUs and Z axis

represents the list of signals of same priority. List of all

transmitting ECUs shall be written in X axis and list of all

receiving ECUs needs to be written in Y axis in any order.

Then list of all signals from highest priority group needs to

be written in Z axis in any order. Then all signals in Z axis

needs to be mapped with the transmitting ECUs in X axis

and the receiving ECUs in Y axis as per this figure. It may

so happen that a given signal is received by more than one

receiving ECUs. This mapping of each CAN signal with its

transmitting ECU and receiving ECUs may be represented

with the help of a symbol (say a Dot).

Figure 2: Mapping of CAN signals of same priority with

Transmitting ECU and Receiving ECUs

Step 5

After each signal from highest priority group is mapped with

transmitting ECU and receiving ECUs, all the Dots will be

distributed in the 3 D space in the plot. The names of the

signals in Z axis and the name of the receiving ECUs in Y

axis were written in any random order in the previous step.

Now, the order of the signals along the Z axis and the order

of ECUs in Y axis shall be re-arranged in such a way that all

the Dots in the 3 D space form different distinguishable

clusters of Dots. Different Dots within any cluster are close

together, however Dots in different clusters are much distant

from each other; so that different clusters are distinguishable

from each other.

All signals from any cluster of Dots shall be packed together

in the same CAN Frame. Signals shall be packed in a CAN

frame until the frame is fully packed (or available data field

is too small to accommodate any signal further). If the

number of signals are more and if it is not be possible to

accommodate all the signals within one CAN Frame, then

the remaining signals need to be packed in another CAN

Frame, and so on. All signals from different cluster of Dots

shall be packed in different CAN Frames. At this stage, only

different serial numbers need to be assigned to different

CAN Frames to differentiate one CAN Frame from the

other. Actual value of CAN Frame Identifier will be

assigned for each CAN Frame at a later step as per proposed

method.

Once all signals from the highest priority signal group are

packed, then signals from second highest priority group

shall be packed. So, step 4 and step 5 shall be repeated for

all the signals in second highest priority group and so on for

other priority groups. It is possible to have a partially packed

CAN frame with higher priority level (say priority level „x‟)

CAN signals with sufficient data field available to pack any

other signals within this frame. However, all the signals of

priority level „x‟ are already packed into CAN frames. Then

signals from lower priority level (say priority level „y‟;

where value of „y‟ is greater than value of „x‟) can be

packed into this partially packed CAN frame with higher

priority signals to optimize the bus load.

Step 6

After signals are packed in different CAN frames and

different serial numbers are assigned in different CAN

frames, it is recommended to assign the value of CAN

Identifier for each CAN frame. As per CAN protocol

specification (version 2.0), CAN Frames have either 11 bit

CAN Identifier or 29 bit CAN Identifier. CAN frame with

11 bit Identifier is called Standard Frame and CAN frame

with 29 bit Identifier is called Extended Frame. This

literature suggests method for assigning CAN Identifier for

Standard Frame (i.e. CAN frame with 11 bit CAN ID).

This paper suggests defining sub-fields within the available

11 bits for CAN ID. Following sub-fields shall be defined

within 11 bit CAN ID before assigning the value of CAN ID

as explained in Fig. 3.

Figure 3: Sub-fields in CAN Identifier of a Standard CAN

Data Frame with 11-bit CAN Identifier

Priority sub-field: This is a 2 bit sub-field within the 11 bit

CAN ID in the highest significant part of CAN ID. As this is

2 bit sub-field, priority can take value range from 0 to 3.

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2076

Priority levels 1 to 4 was assigned for each transmit signal in

step 3. Refer the definition of priority level of transmit

signal in step 3. Now, value of this sub-field shall be

according to the priority level of the signals within the CAN

frame, if all the signals within the CAN frame are of same

priority level. Else if all the signals within the CAN frame

are not of same priority level then value of this sub-field

shall be according to the highest priority signal within the

CAN frame.

Table 1: Priority sub-field

Frame type sub-field: As shown in Fig. 3, the length of this

sub-field is 2 bits and placed just adjacent to priority

subfield. This sub-field can take value range from 0 to 3.

Different sub-field values are assigned depending on

different type and periodicity of frames. This is shown in the

Table 2.

Table 2: Frame Type sub-field

Function group sub-field: As shown in Fig. 3, the length of

this sub-field is 3 bits in the lower significant part of CAN

ID. So, this sub-field can take value range from 0 to 7. All

individual transmitting ECUs in the network shall be

classified under different function group according to

criticality of the function groups and shall be assigned

function group ID in this sub-field of CAN Identifier for

every transmitting CAN frame. Table 3 provides different

group IDs for different functions as commonly used in

automotive domain.

Table 3: Function Group sub-field

Transmit frame group sub-field: As shown in Fig. 3, the

length of this sub-field is 4 bits in the lowest significant part

of CAN ID. So, this sub-field can take value range from 0 to

15. For a given priority, frame type and function group it is

possible to have 16 different CAN frames with different

CAN IDs. This sub-field shall act as a serial number field.

Different serial number from this sub-field shall be assigned

starting from integer value 0 (or binary value „0000‟) for

different CAN frames under same priority, frame type and

function group to generate different CAN Identifiers. This

will result in 16 different CAN Identifiers for same value of

priority sub-field, frame type sub-field and function group

sub-field.

For example, if any receiving ECU wants to filter all CAN

frames with safety critical signals with 20 ms periodicity

from chassis domain function group then as per proposed

method, the value of different sub-fields within CAN ID

will be as specified in Table 4.

Table 4: Sub-fields in CAN ID

From the Table 4, we can derive the 11 bit CAN ID range as

„0001001XXXX‟, where X represents Don't Care condition.

So, in this example receiving ECU shall configure

Acceptance Mask and Acceptance Code Registers as per

Table 5.

Table 5: Acceptance Mask and Code Register

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2077

Step 7

The last step is to distribute all the CAN frames transmitted

by different ECUs with time in the network in such a way

that the peak bus load is minimized. If an ECU transmits

more than one CAN frames, then the

ECU shall not transmit all the CAN frames in burst. This is

because if any ECU transmits all of its different transmit

CAN frames in burst, then the peak bus load will increase

and also there will be a possibility that the receiving ECUs

may be able to receive all the consecutive CAN frames in a

bust resulting in loss of CAN frames. Hence this literature

proposes the following.

Each ECU shall transmit the highest priority CAN frame

first. The time instant when the first message is transmitted

shall be considered as zero reference. With respect to this

zero reference, other CAN frames shall be transmitted with

decreasing priority allowing sufficient time-gap between

two different priority frames (with different CAN ID)

transmitted by the same ECU. This shall be achieved by

specifying offset time for every CAN frame transmitted by

any ECU with respect to zero reference.

Let us consider the following example. One ECU which

shall transmit three CAN frames M1, M2 and M3. All the

three frames are 20ms periodic. The highest priority CAN

frame is M1 and the lowest priority CAN frame is M3 for

the ECU under consideration. Then the instant when frame

M1 is transmitted is the „zero reference‟ for frames M2 and

M3. If the offset time for M2 is defined as 5ms and offset

time for M3 is defined as 10ms, then the ECU under

consideration shall transmit the frames M1, M2 and M3 as

shown in Fig. 4.

Figure 4: Offset Time between different CAN Frames (with

different CAN IDs) to reduce peak bus load

So, offset time aims to specify the time between different

CAN frames with different CAN IDs transmitted by the

same ECU to avoid burst transmission of all different CAN

frames by the same ECU.

CAN Calibration Protocol (CCP):

Basics -

In its most elemental form, the CAN Calibration Protocol is

a monitor program. Similar to many earlier serial RS232-

type monitors and bootstrap loaders that provide basic read

and write memory capabilities, CCP provides the same

functionality using a standard protocol rather than a

company-specific proprietary protocol. However, when one

is using a rather high-speed CAN bus in comparison to some

previous 9600 baud UART-based monitor, CCP provides

the ability to access data at such a fast rate that it is possible

to run an application at the same time. Using the right tool,

developers now have a significant advantage over the earlier

monitor methods. When one examines the dialog used by

most monitor programs, it is the tool or PC that is the master

of the commands sent into the ECU. For CCP there is no

difference. The ECU does nothing without the master (Tool)

initiating commands. Using the appropriate CCP messages,

a CCP-compliant tool can read data from the ECU and can

write data into the ECU.

However, this is only CAN Calibration Protocol's minimum

capability. CCP includes several additional monitor

commands, and provides several new features including

automatic data acquisition processing based on events or

periodic updating, flash programming and data security.

Because there is no requirement to use all its features, CCP

is a scalable protocol.

CCP Communication:

Using only two CAN identifiers for message transfers, CCP

uses a specific conversation or dialog to accomplish each

designated function. Each dialog is a collection of

exchanged messages between a master, the calibration or

development tool, and a slave ECU. Most CCP dialog

always uses a master/slave form of conversation. The tool

(or master) always initiates the conversation with a single

CAN message, and once received, the ECU (or slave) is

then responsible for responding with a single CAN message.

Fig

ure

5:

Gen

eral

CC

P

Dialog

Basic CCP Commands – One of the CAN Identifiers is used

to send information from the tool to the ECU. This

command is defined from the ECU‟s point of view as the

Command Receive Object (CRO). The CRO contains

command information and the related parameters needed for

the command. After the ECU receives the CRO, the CCP

driver processes the command code within the CRO. Then,

internal functions or data transfer between the tool and the

ECU can occur.

Figu

re 6:

Com

mand

Recei

ve

Object

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2078

CCP Commands:

The following table shows an overview of all CCP

commands used in the CRO:

CRO Message – The data field for each CAN Identifier used

with CCP is limited to 8 data bytes because CCP is based on

CAN. The CRO uses each of the data bytes for specific

items of information based on the command.

Figure 7: Structure of the CRO Message

The first byte of the CRO Message is a number that

corresponds to the command as defined in the CCP

specification. The second byte is a counter from the tool to

track the current command that was issued. This same value

will also be used in the response from the ECU to the tool.

Basic CCP Response – The other CAN Identifier is used to

send information from the ECU to the tool. This command

is defined from the ECU‟s point of view as the Data

Transmission Object (DTO).

Figure 8: Data Transmission Object

Three types of DTOs are defined by the CCP specification.

These three types are the Command Return Message

(CRM), the Event Message, and the Data Acquisition

Message (DAQ).

CRM-DTO Message – The Command Return Message

(CRM) is a message sent by the ECU in response to a CRO.

The CRM can be a simple acknowledgement to the CRO, or

it can contain actual requested data. The CCP specification

describes in detail the content of each CRM for each CRO.

Figure 9: Command Return Message

Event Message – The Event Message is a specific type of

DTO used to inform the tool of the internal status changes of

the ECU. This information can then be used to invoke error

recovery or other services. The Event Message allows the

ECU to report any errors to the tool that have occurred since

the last CRO was sent by the tool. The CCP specification

describes the available error codes.

Figure 10: Event Message

The CRM and the Event Message have the same structure

for the first three bytes of the message. The first byte is the

Packet Identifier (PID). A CRM has the value 0xFF, and the

Event Message has the value 0xFE. The second byte is the

error code, and the third byte is the command counter value

sent by the tool in the last CRO message. The remaining

bytes are used for data relating to a particular response.

Figure 11: Structure of CRM and Event Message

DAQ-DTO Message – The Data Acquisition (DAQ)

message is a specific type of DTO used to send

measurement data to the tool. Before the ECU can send

DAQ messages, the tool must send initialization messages.

The ECU is informed in the initialization process of which

measurement data needs to be sent to the tool. The tool also

sends information on whether the measurement data is event

driven or periodically sampled. Then the measurement data

values can be sent to the tool without the tool first having to

send a CRO to request the information.

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2079

Figure 12: Data Acquisition Message

Figu

re

13:

Syn

chro

nous

Data

Acq

uisit

ion

Duri

ng the initialization process tables are setup in the ECU to

identify the location of the measurement data. Each table

can contain up to seven memory addresses. The table is then

assigned a unique packet identifier PID that is used for the

first byte of the DAQ message. The other seven bytes are

used to send the requested data to the tool.

Figure 14: Structure of Data Acquisition Message

Object Descriptor Tables – The tables that are used to

organize the location of the measurement data are called

Object Descriptor Tables (ODTs). An ODT describes the

contents of a single CAN message for data acquisition. Each

ODT stores up to seven address locations where the

measurement data is stored. The unique Packet Identifier

PID is then assigned to the ODT to identify the data. Since a

unique PID is needed to identify the measurement data for

each ODT, and the number of data bytes that is sent back

per ODT is limited to seven data bytes, multiple ODTs may

be necessary to store all the requested measurement data. A

DAQ list contains all the ODTs for a particular event or time

period. Multiple DAQ Lists are needed when data needs to

be acquired based on different events or time periods.

Figure 15: Overview of DAQ Lists with Multiple ODTs

The ECU receives the CAN message with the SHORT_UP

command. The ECU then responds to this message with the

appropriate CRM. Figure 14 shows the data needed for the

SHORT_UP response. The first byte (byte 0) of the

response is a Packet Id of 0xFF. This indicates that the DTO

is a CRM. If the ECU is able to respond successfully to the

request, the second byte (byte 1) is the command return code

with the value 0x00. (The complete list of command return

codes are listed in the CCP specification.) The third byte

(byte 2) is the command counter value received in the CRO.

The last five bytes contain the actual requested data. In the

above example, only four data bytes were requested by the

CRO; therefore, the tool disregards the data in the last byte

(byte 7).

The CCP driver is developed for the ECU to support the

commands described in the CCP specification. The

commands must be received from the CAN bus, and

processed in the ECU to provide the appropriate response

which must be sent back out on the CAN bus. Two methods

of obtaining measurement data are possible. A simple

polling method can be implemented that sends data only

after a request message from the tool. The DAQ list can be

implemented when more throughput of data is needed or

when the data needs to be obtained synchronously.

The CCP driver can be implemented with all the commands

described in the CCP specification, or it can be scaled down

to include only the commands needed for a particular

implementation. The CCP implementation in the ECU can

be broken down into two parts. The first part is a command

processor, which is able to receive the required CRO

commands and send the appropriate CRM. The second part

involves the DAQ processor, which is responsible for

sending the required DAQ list information at the appropriate

time. Figure 16 illustrates the two main components of the

CCP Driver.

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2080

Figure 16: CCP Communication

In summary, the ECU receives commands codes and the

related parameters in the Command Receive Object (CRO)

to carry out internal functions or memory transfers. The

Data Transmission Object (DTO) is used by the ECU to

respond to the CRO, to indicate any errors conditions, and to

transmit measurement data to the tool.

CCP Applications:

Basic development uses for CCP include

• Real-time ECU information (basic read and write

function).

• Real-time access of ECU parameters (data acquisition).

• Real-time adjustment of ECU process algorithms

(Calibration).

• In system or in-vehicle evaluation of design concepts.

• Evaluation of engineering design modifications.

• In system (or in-vehicle) Flash Programming.

• Emulation-type operation beyond the lab bench.

Coupled with the right tools, CAN Calibration Protocol is

suitable for several module development activities. CCP

allows development outside of the traditional software

engineering environment. Beyond the engineer's desk and

the engineering lab, module development on the road or on

the test track is not only possible but several companies are

already at this advanced stage.

CCP Driver Implementation:

The CCP Driver must be implemented in the ECU before

any interaction with the tool can occur. The CCP commands

will be sent in a particular order by the tool to elicit the

appropriate information from the ECU. The ECU only needs

to implement the correct responses to each command as

required by the CCP specification. The CONNECT

command must be processed like other CCP commands;

however, the ECU must also store additional information

about the status of the connection.

As required in the specification, the ECU must not respond

to any CCP messages unless it has processed a CONNECT

command with the proper station address. Therefore, the

CCP driver must store the current status of the CCP

connection, so that commands can be ignored or

acknowledged as required by the CCP specification.

Initialization Sequence – In a typical tool application, the

tool sends the connect command with the station address of

the ECU. The ECU responds with the correct CRM-DTO if

the station address is correct. Next, the

GET_CCP_VERSION command can be issued to allow the

tool to determine if the ECU is compatible with CCP

implementation 2.0 or 2.1. Then, the EXCHANGE_ID

command can be issued for automatic session configuration.

The ECU responds by sending the Station Identification

name‟s length and setting the Memory Transfer address to

the appropriate memory location with the Station

Identification name. The tool can then request the Station

Identification name. Each version of the ECU software can

be described by a different database. The EXCHANGE_ID

can be used to make sure the tool database version matches

the ECU software version. Figure 17 illustrates this

sequence.

Figure 17: Example Initialization Operations

DAQ Operations – If the DAQ list is used for data

acquisition in a typical tool application, the tool must first

inquire about the DAQ storage information in the ECU. For

example, the user may request information based on two

DAQ lists, but the ECU has only been configured to store

information for one DAQ list. Once the tool determines that

the setup in the ECU is sufficient for the current requested

measurement data, the DAQ lists can be configured. Then

the command to start the DAQ information transfer is sent

by the tool. The ECU must continue to send the required

measurement data until the DAQ STOP command is

received from the tool. Figure 18 illustrates an example of

the DAQ operations sequence.

Figure 18: Example DAQ Operations

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2081

Disconnect – When the connection from the tool to the ECU

is no longer needed, the tool can issue the DISCONNECT

command. The CCP specification allows for either a

temporary disconnect or for a complete termination of the

calibration session.

CCP Implementation Requirements:

To implement CCP, the software developer needs the

following three items:

• CCP specification document.

• CAN bus connection to the ECU.

• CCP Software Driver.

Figure 19 illustrates the functionality needed for CCP CAN

message reception.

Figure 19: CCP CAN Message Reception

The CCP driver code must also be able to interface to the

CAN driver code for the transmission of CCP messages.

When the CCP driver calls a function in the CAN driver to

transmit the CCP message, the CCP driver needs to be

informed when the message is transmitted successfully.

When the CAN driver calls a function (ccpSendCallBack) to

inform the CCP driver that the last CCP message was

transmitted successfully, the CCP driver is then able to call

the CAN driver function to send another message.

This confirmation process prevents the CCP Driver from

overloading the CAN transmit buffer with CCP messages.

This also allows the application some control over how

often the CCP messages are sent if the reception and

transmission is integrated into the operating system of the

application. Figure 20 illustrates the functionality need for

CCP CAN message transmission.

Figure 20: CCP CAN Message Transmission

Figure 21 gives an overview of the interfaces needed to

implement the sample CCP driver. For more information on

implementing the free CCP driver provided by Vector,

please refer to the CCP Driver Implementation in Electronic

Controls Units in the Reference section.

Figure 21: CCP Sample Driver Interface

CCP Resource Requirements – The CCP software driver

will consume resources such as RAM, ROM and CPU time

in the ECU. The code size of the CCP software driver

depends on which optional features are implemented. The

following list indicates the resource requirements for an

implementation with 1 DAQ List and 3 ODTs. This allows

for storing of up to 21 bytes of data in an intermediate

buffer.

CCP Performance Ratings – CCP performance depends on a

number of factors. The response latency time of the services

in the ECU affects the CCP performance. In other words,

the amount of time allocated by the ECU operating system

for the CCP driver to perform its functions greatly affects

the performance of the CCP driver. In addition, CAN bus

conditions such as bit rate, busload, and bus priority level of

the CCP message also affect the performance of the CCP

driver. With a bit rate of 500 kBit/sec and typical load

conditions, a burst memory transfer of ~5-10 kBytes/s and

data acquisition rates of ~25 kBytes/s were obtained. A

burst memory transfer would include uploading calibration

values and flash programming. The data acquisition rate is

for the synchronous data acquisition of 100 values every 10

msec. Each of the 100 values were two bytes in length.

These results were achieved with an implementation in a

Siemens 80C176 16 MHz processor.

CAN Messages Handler – Development Process:

Traditional Development Approach – In the early phase of a

typical Automotive ECU software development project, it

was necessary to make the initial analysis on the vehicle

ECU‟s CAN network. The above phase is characterized by a

large effort to write a specification to describe the CAN

interfaces for the new ECU that must be in compliance with

other connected ECUs. Therefore, the System Engineer

prepares a specification document for the CAN Interface

based on the vehicle‟s pre-existing CAN network database.

Document–based specifications are shared among different

teams, each for that team‟s ECU. Errors due to

misunderstanding between them may have impacts up to the

Implementation phase and then only be detected during the

System Testing and Validation phase. Based on system

engineering documentation, the software engineers

manually write the code relevant to the CAN Messages

Handler, increasing the risk of propagating errors

throughout the next process phases and of having additional

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2082

implementation errors. This process suffers from a variety of

drawbacks, including the difficulty of keeping the

documentation updated. For the OEM, this process has the

disadvantage that the software has to be newly developed

for each ECU development project, both if the supplier

changed and if the OEM requires adding a new ECU.

Efficient Development Process - One objective of the

Embedded Software Development is to participate to the

development of the ECU's application software, with

particular emphasis on OEM strategic functions. A second

objective is to apply an efficient development process for

software development and validation. The approach used

implied the development and early validation of the

embedded software in a graphical design and subsequent use

of automatic C code generation and its reuse in different

ECUs with minor migration effort.

Vehicle ECU Network Database – During the vehicle's

evolution from a simple ECU network to a very complex

ECU network, the OEM system engineers are defining the

Network Nodes and storing all information in a specific

network database, to be updated in case of change on the

vehicle network. Usually the CAN Network Database,

specific for each vendor, contains CAN message definitions

for an entire vehicle in terms of message identification, start

bit, number of bits for each signal within a given message,

byte order (Intel/Motorola), data type (signed, unsigned,

etc..), conversion rules, applicable range, default value,

comment. Commercial tools, such as Vector products,

facilitated the system engineers' work. The system engineers

use the database to generate the specification document and

to perform the System Test, where they verified and

validated the Vehicle ECU's network.

The CAN-DB Import Tool that creates a configuration file

in a specific MATLAB format from a standard CAN

database file which includes all the communication

information (for example the bit meaning for each byte of

each CAN Message). Offline importing is scalable, supports

multiple platforms and it is independent of the standard (for

example J1939).

The CAN Frame Configurator allows the system software

engineers to configure (through a user-friendly GUI) the

process-chain (filter, fault check, recovery) applied to each

signal coming from (sent to) the CAN bus. In other words,

the system software engineer can easily use the data (bytes)

coming from the Rx CAN messages and create the data for

the Tx CAN messages. Individual words, bit strings, and

word segments within a CAN message can be defined as

data fields, allowing the binary data passed onto the bus to

be converted into a meaningful format. Data fields can be

named (e.g. vehicle speed or engine speed) and relevant unit

measurements can be specified and used when requested by

the application software.

The adaptation process required an appropriate CAN

interface implementation, both in terms of CAN Driver and

CAN Message Handling, according to the target platform's

basic software.

Its complete application to our scenario should have

involved the following development phases:

 ECU network redefinition in terms of CAN network

database adaptation.

 CAN messages specification for the new ECU.

 Manual implementation (manual coding, unit test and

SW documentation preparation).

 System testing using Hardware-In-the-Loop.

 System testing on the vehicle.

Timing Aspects of CAN: CAN uses non-destructive bitwise

arbitration process to select a message when message

collision occurs. The simultaneously transmitted messages

are allowed to enter the bus, while the process monitors their

identifiers bit by bit. Message transmissions can go on, as

long as the messages‟ identifier bits are the same. Once the

difference is detected, the message with a passive bit (1) will

have to stop, while the message with dominant bit (0)

continues. The message which is backed off will be

transmitted again as soon as the CAN bus is free.

By giving each data a unique identification number, same

priority message collision where all the messages have to be

taken off line, can be avoided. In practice, more important or

urgent messages are given lower identification numbers,

which give them higher priorities to be transmitted. Under

the CAN protocol, the message with the highest priority

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2083

always get the first access to the bus, which effectively

guarantees its delivery time. It can be seen that a problem

can arise when a large number of high priority messages are

transmitted, and lower priority messages will have to keep

backing off transmission. This may cause long delays before

lower priority messages can be sent.

The vehicle dynamic control systems considered here are

safety related. Hence it is vital that their control related

messages, for example a wheel speed data, arrive in time. It

is, therefore, important that the CAN message delays of the

above vehicle electronic architectures are examined. An

excessive delay of signal transmission is a delay longer than

the period of the transmission, causing the delayed data to

be obsolete. The results of message missing or late arrival,

forcing ECUs to use previous, out-of-date data could be

hazardous. Thus, a simulation of CAN data transfer between

ECUs had been carried out.

Simulation Data

In order to realistically simulate this operation, real

information on data signalling in the target vehicle is

needed, including all the other messages that would be using

the CAN bus. The signals include all classes (Class A, B and

C), characterised as low, medium and high speed messages,

respectively.

.

Figu

re

22:

Timi

ng

diagr

am of a 10 ms period signal generation

From ECUs linked by arrows to Bus Queue represents, data

queuing to be transmitted from ECUs onto the CAN bus. An

ECU will let its signals join a queue one by one, equivalent

to an ECU attempting to transmit one signal at a time. More

than one signals in the Bus Queue at a time symbolises

message collision. The Bus Queue arranges incoming

signals in order according to their priority, equivalent to

CAN message contention. The highest priority signal is put

in front of the queue. The Bus Queue then let the highest

priority signal onto the CAN bus (displayed as a door

image) once the bus is free. Each signal occupies the CAN

bus for 64 ms, equal to the time taken to transmit the 8 byte

message.

Simulation Run

A simulation was run for an equivalent of 1 real-time second

at time. One second covers the periods of all the signals

except for signal no. 117, whose period is 10s and hence of

little significant to the CAN bus load. Since all the signals

are assumed periodic, any longer simulation run would give

a repetitive result to the 1 second run.

For each architecture, the simulation was run 100 times with

different sets of random numbers. Each simulation was run

for 1 real-time second. A number of simulations were run in

order to simulate different possibility of messages arriving

on the CAN bus at different times.

Each simulation involves 4800-6800 messages getting

access to the CAN bus. The time which the two groups of

class C signals (of period 5 and 10ms), which are for real-

time control, wait in the CAN Bus Queue plus the

transmission time was collected. This is equivalent to the

signal time delay associated with CAN in real applications.

Working with P-CAN:

The PCAN-USB adapter from Peak-System Technik

enables simple connection to CAN networks. Its compact

plastic casing makes it suitable for mobile applications.

The opto-decoupled version guarantees galvanic isolation of

up to 500 Volts between the PC and the CAN side.

The package is also supplied with the CAN monitor PCAN-

View for Windows® and the programming interface PCAN-

Basic.

Figure 23: CAN Protocol Adapter

Figure 24: PCAN View 1.

Figu

re

25:

PCA

N

View

2.

The

PCA

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2084

N-USB adapter provides one CAN channel at computers

with USB ports. Device drivers and programming interfaces

exist for different operating systems, so programs can easily

access a connected CAN bus.

Results and Analysis

The frequency distribution of the CAN delay of the two

groups of class C signals are shown in Figures 26 and 27.

Figure 26: Frequency Distribution of CAN Transmission

Time of 5 ms Period Class C Signals

Figure 27: Frequency Distribution of CAN Transmission

Time of 10 ms Period Class C Signals

From Figures 26-27, it can be seen that the majority of the

two groups of class C signals are transmitted within 0.7 ms.

The minimum possible CAN transmission time (no

collisions) for each signal is 0.64 ms. This indicates that

those signals are transmitted virtually without delay.

This can be seen from the higher percentage of signals with

transmission time longer than 17 ms (the last bars on the

chart) in Figure 6 than those in Figure 26. Also the 10 ms

period signals have experienced longer worst case delay

than the 5 ms signals. This could be expected, since the 10

ms period signals have lower priority than the 5 ms signals.

Conclusion:

The main object of this literature is to optimize CAN signal

packing into CAN frames, to assign CAN Identifiers into

CAN frame and distribute these CAN frames in the network

with time in such a way that bus-load of CAN network as

well as ECU load for all receiving ECUs in the CAN

network are minimized.

It can be concluded that the proposed method increases the

number of signals which can be transmitted and received by

different ECUs in the network. This reduces the need to

introduce another sub-networks and network gateways just

to manage the bus-load. This results in reduction of

engineering effort and cost for network development.

Aside from advantage of using a standard protocol rather

than using a company-specific proprietary solution, CCP

provides a wide range of functionality to help both the OEM

and the module supplier in the development of electronic

modules.

Having a complete set of tools to handle module calibration,

test, measurement, diagnostic, and flash programming

activities all within one protocol is a big technical advantage

for the software engineer.

Another advantage can be concluded that proposed method

ensures that all signals will reach receiving ECU from

transmitting ECU within maximum allowed latency time for

these signals. This improves performance of the distributed

functionalities and customer satisfaction.

References:

1. Cortese, D., “Efficient CAN Protocol Development

Process,” SAE Technical Paper 2009-01-1607, 2009,

doi:10.4271/2009-01-1607.

2. Di Natale, M., “What CAN Go Wrong in CAN (Timing

Analysis),” SAE Technical Paper 2009-01-1378, 2009,

doi:10.4271/2009-01-1378.

2. CCP CAN Calibration Protocol, ASAP Standard, Version

2.1, February 1999

3. CCP Driver Implementation in Electronic Control Units,

Version 1.18, Vector Informatik GmbH, 1999.

4. CCP, A CAN Protocol for Calibration and Measurement

Data Acquisition, Rainer Zaiser, Vector Informatik GmbH.

5. B. Upender, “Analysing the Real-Time Characteristics of

Class C Communications in CAN Through Discrete Event

Simulation”, SAE 940133,1994.

6. J. Fenton, “Focus on Networking of On-Board Vehicle

Electronic Systems”, Automotive Engineer, June/July 1996.

Author Profile:

Rahul Adsul: He is working as Assistant Manager with CIS

Technologies (India) Pvt. Ltd. He is Doctoral candidate in

Management from SIU, Pune and received MBA degree from

YCMOU. He has completed B.E. from DYPIET, Pune University.

He is lifetime corporate member of Institute of Engineers (India)

under international body IEEE.

His research interests include fault diagnosis, ECU architecture

management, vehicle health management and development and

testing of ECUs.

Rahul B. Adsul, IJECS Volume 2 Issue 6 June, 2013 Page No.2072-2085 Page 2085

Prof. Mrs. Sneha D. Joshi: She is Research

scholar in COEP Pune. She has received B.E.

and M.E and is pursuing Ph.D. at College of

Engineering Pune. She is having 16 years of

Teaching Experience. Her fields of interests are

Modeling & robotics. Presently she is working

as head of the E & TC department in PVPIT, Pune.

