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Abstract: This literature is in the field of communication networks where different Electronic Control Units (ECUs) communicate with 

each other over Controller Area Network (CAN) protocol. Typically these types of CAN networks are used in automotive vehicles, plant 

automations, etc. This proposed method is applicable in all such applications where controller area network is used as backbone electrical 

architecture. 

This literature proposes a new method of CAN signal packing into CAN frames so that network bus-load is minimized so that more number 

of CAN signals can be packed and more number of ECUs can be accommodated within a CAN network. The proposed method also ensures 

that the age of each CAN signal is minimized and all CAN signals reach the intended receiving ECUs within their maximum allowed age. 

Typically network designers are forced to design and develop multiple sub-networks and network gateways to get rid of network bus-load. As 

the proposed method intends to minimize network bus-load, the requirement of gateways just to reduce bus-load will be avoided. 

The implementation of CAN messages has been a critical aspect of the ECU development process in recent years. The traditional approach 

generates more inconsistencies between the specification and the software coding (implementation), probably coding errors, and variable 

reproducibility of the implementation, depending on the ECU platform. Therefore in order to achieve an efficient development, the use of a 

high abstraction level of the CAN protocol is essential. 

The proposed method also proposes method for assignment of CAN Identifiers in each CAN frame by introducing different sub-fields within 

the CAN Identifiers. This will help to reduce the delay in the CAN frames due to arbitration loss in the network. The proposed methods will 

minimize the ECU loads network due to CAN frame reception for all ECUs in the CAN by minimizing the number of CAN frames to be 

received by each ECU in the network and also by enabling hardware filtering of CAN frames by receiving ECUs due to different sub-fields 

within the CAN Identifier. 

 

Keywords: Electronic Control Unit, Automotive Domain, CAN Identifiers, Frames. 

 
 

Introduction 

This literature relates to communication networks where 

different electronic control units (ECUs) communicate with 

each other over Controller Area Network (CAN) protocol. 

The present paper talks about a new design method for CAN 

signal packing into CAN frames, assigning CAN Identifiers 

into CAN frames so that network bus-load and ECU load 

can be minimized. 

Typically these types of CAN networks are widely used in 

automotive vehicles, plant automations, etc. The proposed 

method is applicable in all such applications where 

controller area network is used as backbone electrical 

architecture for sharing electrical signals. With the advent of 

distributed real-time control functionalities the need has 

arisen for reliable communication network systems where 

different Electronic Control Units (ECUs) are connected 

with each other through Controller Area Network (CAN 

network) buses for sharing hundreds of critical signals. 

These CAN signals are packed into CAN frames. These 

CAN frames in turn are transmitted and received by 

different ECUs in the network. Typical applications of such 

network systems are widely seen in automotive domain, 

where in-vehicle networks are used as the backbone of all 

distributed control functions. 

Existing methodologies for CAN signal packing mainly 

group the signals based on the periodicity of these signals; 

so that the signals with same periodicity and transmitted by 

same ECU are grouped together. Then signals which are in 

the same group are packed into a CAN frame until the frame 

is fully packed. If the first CAN frame is fully packed, then 
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another CAN frame is created and packed with remaining 

signals and so on. After all of the CAN frames are created, 

lower value of “Frame Identifier” is assigned to CAN 

frames with lower periodicity (or more frequent CAN 

frames) to allocate higher priority for that frame. 

The problem associated with existing practice of CAN 

signal packing is that the bus-load of the network and ECU 

load are not optimized. So, the increase in number of CAN 

signals results in increase in network bus-load and ECU 

load. This results in unnecessary increase in sub-networks 

and gateways in the network architecture which in turn 

increases the cost. 

 

The CAN Calibration Protocol, which is commonly referred 

to as CCP, is essentially a software interface used to 

interconnect a development tool with an Electronic Control 

Unit (ECU). The interface defines methods to handle 

module calibration, measurement data acquisition, and flash 

programming activities. 

Whether the complete CCP interface or a portion of it is 

supported by the tool or implemented in the ECU depends 

upon the module developer's needs. Based on the Controller 

Area Network (CAN) protocol, CCP places no limitations 

on the choice of physical layer and the system-selected 

communication bit rate. 

CAN Calibration Protocol is capable of supporting both a 

single point-to-point connection and a networked connection 

to an entire distributed system. This means that any 

combination of calibration, measurement data acquisition, 

and flash programming activities are possible for a single 

module or for any portion of modules across a CAN 

network. 

 

There is yet another problem associated with existing 

method. As the signal packing is not optimized, the bus-load 

is increased. This increase in bus-load results in higher 

latency for the CAN signals. Higher latency value for CAN 

signals affects the performance of the distributed functions 

which leads to customer dissatisfaction. Existing methods 

for assignment of CAN Identifiers into different CAN 

frames are not optimized. It classifies the available range of 

CAN Identifiers based on the periodicity of CAN frames 

and then randomly assigns the CAN Identifiers based on the 

periodicity of CAN frames. These methods leads to 

arbitration loss of CAN frames in CAN network and thus 

leads to message loss.  

In recent years, the Commercial Vehicle OEM has been 

offering many technical solutions to satisfy customer needs 

and to increase the efficiency and productivity of trucks. 

The new solutions have been realized by using Electronic 

Control Units. All ECUs are linked together via a unique 

communication interface. The information which each ECU 

needs to function correctly is received from other system 

components and other ECUs. In addition, each ECU puts 

data about its own status on the network for reception and 

evaluation by other control units. For example, a vehicle 

computer can read the current engine speed from the engine 

controller and provides the relevant data to a different ECU. 

The OEM that elaborates the ECU network has the big task 

of requiring all suppliers to provide a common and shared 

standard protocol in order to improve the system‟s 

robustness and diagnostics. 

The CAN standard is well established and has been refined 

as the standard de facto for communication between ECUs. 

The CAN network implementation typically includes a 

microprocessor with an integrated CAN protocol controller. 

Usually, each supplier provides a CAN Driver, based on 

OEM-specific requirements in terms of CAN Controller 

Initialization, Reception and Transmission of CAN 

messages, CAN Messages scheduling, CAN Gateway 

functions and more (in general functions relevant to 

Network Management). 

 

Detailed Description: 

 
Typically, different Electronic Control Units (ECUs) are 

connected with each other over CAN network. Different 

ECUs share their data with each other over this CAN 

network in form of CAN signals. For example, Engine 

Control Module (ECM) is connected in the CAN bus. ECM 

has the data for current engine speed. This data needs to be 

shared with other ECUs over CAN network. Then ECM 

needs to transmit current engine speed as one of the transmit 

signals over CAN bus and other ECUs need to receive this 

CAN signal. 

Typically, ECUs transmit and receive CAN frames over the 

network. So, CAN signals need to be packed in CAN frames 

such that the ECUs can share the signals over CAN network. 

This literature proposes optimized method for packing these 

CAN signals into CAN frames. 

 

Terminologies - 

Following terminologies are defined to explain the proposed 

method. 

Age of a signal: 

Age of a signal is defined as the time between the following 

two events: 

• The time instant when a new value of the signal is 

available with the application in transmitting ECU. 

• The time instant when signal is consumed by the 

application in receiving ECU. 

 

As shown in Fig. 1, the Age of a signal is the summation of 

the following: 

• Time delay in the transmitting ECU after generation of 

new signal value and before queuing of CAN frame for 

transmission 

• Time required to transmit the frame in the CAN network 

(considering time delay due to arbitration loss in the CAN 

network) 

• Time delay in the receiving ECU after reception of CAN 

frame and before consumption of signal value by the 

application in receiving ECU 

 

 
Figure 1: Age of a signal in CAN network 
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Max allowed Age of a signal: 

It is the maximum allowed delay time by which the latest 

value of a signal generated in transmitting ECU can be 

consumed by the application in receiving ECU without any 

degradation in distributed functionality. 

OBJECTIVES: The proposed method aims to pack the 

transmit signals into CAN frames such that the following 

two objectives are satisfied: 

Objective 1: Network average bus-load is minimized. 

Every transmit CAN frame contributes to the bus-load. 

Average bus-load contributed by one transmit CAN frame is 

 

.....(1) 

 

Average bus-load contributed by every individual CAN 

Frame needs to be added for all the Frames in the network to 

arrive at the average bus-load of the network. 

So, we can conclude that the average bus-load of a network 

is directly proportional to the number of CAN Frames in the 

network. More the number of Frames more is the bus-load. 

We can also say that lower the periodicity of a CAN Frame 

higher is the average bus-load of network. 

 

Objective 2: ECU load due to CAN frame reception in the 

network is minimized. 

ECU load due to CAN frame reception is directly 

proportional to the number of CAN frames which that ECU 

receives. 

For example, if any ECU needs to receive 7 different CAN 

signals from the network then 

▪ The ECU load due to CAN frame reception will be 

maximum if the ECU needs to receive 7 different CAN 

frames for 7 different CAN signals (i.e. all different signals 

are packed in different frames) 

▪ The ECU load due to CAN frame reception will be 

minimum if the ECU needs to receive only 1 CAN frame 

(i.e. all 7 signals are packed within 1 CAN frame). 

So, we can conclude that ECU load due to CAN frame 

reception is maximum if all the intended receive signals are 

packed in different CAN frames. To minimize ECU load 

number of receive CAN frames by any ECU in the network 

needs to be minimized. Also, the CAN Identifiers shall be 

assigned in the CAN frames in such a way that any 

receiving ECU is able to filter the intended receive CAN 

frame correctly through hardware filtering. 

 

Proposed Method: 

 

The proposed method is explained step by step to meet the 

objectives of this literature. 

 

Step 1 

Names of all CAN signals transmitted by different ECUs in 

the network need to be listed first. Each signal which is 

transmitted by any ECU in the network will be received by 

one or more ECUs in the network. If one signal is received 

by more than one ECU, then there is possibility that the 

functional requirement for the same signal may differ 

among different receiving ECUs. So, the following signal 

properties for each transmit signal need to be defined in the 

following manner: 

• Physical range of transmit signal: This shall be defined 

as the maximum of all “physical range” requirements from 

all receiving ECUs for this signal. 

• Physical resolution per bit: This shall be defined as the 

minimum of all “physical resolution per bit” requirements 

from all receiving ECUs for this signal. 

• Maximum allowed Age: This shall be defined as the 

minimum of all “max allowed Age” requirements from all 

receiving ECUs for this signal. 

So, if the same signal is needed by different receiving ECUs 

and functional requirements are different for these receiving 

ECUs, the transmit signal shall not be duplicated to meet 

separately different receiving ECU's requirements; the 

properties of transmit signal shall be chosen such that it 

meets requirements of all receiving ECUs to avoid 

duplication. 

 

Step 2 

The length and periodicity of each transmit signal needs to 

be derived as follows. This is applicable for all periodic 

transmit signals. 

   ...(2) 

 

         …. (3) 

Factor of safety is a configurable value, by default it shall be 

3. For critical signals, Factor of safety shall be 5. So, the 

proposed method suggests periodicity (or cycle time) of 

each transmit signal to be at most one third the max allowed 

age for that signal. This will ensure that each transmit signal 

will get consumed by receiving ECU within max allowed 

age of the signal. 

As CAN is real-time in nature, the Transmit-Signal Model 

of any ECU may demand for Event-driven or Mixed 

(Eventdriven + Periodic) CAN signals to be transmitted by 

that ECU. For such cases of Event driven or Mixed CAN 

signals, Virtual Periodicity shall be calculated from the max 

allowed age of these signals, as mentioned in Eq. (3). This 

method of computing Virtual Periodicity will simplify the 

modeling of Event-driven and Mixed CAN signals in real-

time distributed control systems. 

 

Step 3 

Assign priority for each transmit signal. Higher priority shall 

be given to critical signals. Typically 4 different levels of 

priority need to be assigned where priority 1 is the highest 

priority and priority 4 is the lowest priority. Following are 

the different priorities for CAN signals: 

• Priority 1: All safety critical signals, security related 

signals, interface torque control signals and associated 

health status signals conveying plausibility or implausibility 

of different control signals shall be given the highest 

priority. 
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• Priority 2: All body function related control signals and 

associated health status signals shall be given next higher 

priority (i.e. priority level 2). 

• Priority 3: All comfort and convenience function related 

signals and associated health status signals shall be given 

next higher priority (i.e. priority level 3). 

• Priority 4: All other signals (for example information 

related signals, network management related signals, 

diagnostic signals, proprietary signals, development signals, 

etc) shall be assigned the lowest priority. 

 

Step 4 

Packing of CAN signals needs to be done separately for 

different priority groups of signals. First all CAN signals 

from highest priority group need to be packed in the CAN 

frames. Refer Fig. 2. This figure shows a 3 dimensional plot 

of which X axis represents the list of transmitting ECUs, Y 

axis represents the list of receiving ECUs and Z axis 

represents the list of signals of same priority. List of all 

transmitting ECUs shall be written in X axis and list of all 

receiving ECUs needs to be written in Y axis in any order. 

Then list of all signals from highest priority group needs to 

be written in Z axis in any order. Then all signals in Z axis 

needs to be mapped with the transmitting ECUs in X axis 

and the receiving ECUs in Y axis as per this figure. It may 

so happen that a given signal is received by more than one 

receiving ECUs. This mapping of each CAN signal with its 

transmitting ECU and receiving ECUs may be represented 

with the help of a symbol (say a Dot). 

 

 

    

 

 

 

Figure 2: Mapping of CAN signals of same priority with 

Transmitting ECU and Receiving ECUs 

 

 

 

Step 5 

After each signal from highest priority group is mapped with 

transmitting ECU and receiving ECUs, all the Dots will be 

distributed in the 3 D space in the plot. The names of the 

signals in Z axis and the name of the receiving ECUs in Y 

axis were written in any random order in the previous step. 

Now, the order of the signals along the Z axis and the order 

of ECUs in Y axis shall be re-arranged in such a way that all 

the Dots in the 3 D space form different distinguishable 

clusters of Dots. Different Dots within any cluster are close 

together, however Dots in different clusters are much distant 

from each other; so that different clusters are distinguishable 

from each other. 

All signals from any cluster of Dots shall be packed together 

in the same CAN Frame. Signals shall be packed in a CAN 

frame until the frame is fully packed (or available data field 

is too small to accommodate any signal further). If the 

number of signals are more and if it is not be possible to 

accommodate all the signals within one CAN Frame, then 

the remaining signals need to be packed in another CAN 

Frame, and so on. All signals from different cluster of Dots 

shall be packed in different CAN Frames. At this stage, only 

different serial numbers need to be assigned to different 

CAN Frames to differentiate one CAN Frame from the 

other. Actual value of CAN Frame Identifier will be 

assigned for each CAN Frame at a later step as per proposed 

method. 

Once all signals from the highest priority signal group are 

packed, then signals from second highest priority group 

shall be packed. So, step 4 and step 5 shall be repeated for 

all the signals in second highest priority group and so on for 

other priority groups. It is possible to have a partially packed 

CAN frame with higher priority level (say priority level „x‟) 

CAN signals with sufficient data field available to pack any 

other signals within this frame. However, all the signals of 

priority level „x‟ are already packed into CAN frames. Then 

signals from lower priority level (say priority level „y‟; 

where value of „y‟ is greater than value of „x‟) can be 

packed into this partially packed CAN frame with higher 

priority signals to optimize the bus load. 

 

Step 6 

After signals are packed in different CAN frames and 

different serial numbers are assigned in different CAN 

frames, it is recommended to assign the value of CAN 

Identifier for each CAN frame. As per CAN protocol 

specification (version 2.0), CAN Frames have either 11 bit 

CAN Identifier or 29 bit CAN Identifier. CAN frame with 

11 bit Identifier is called Standard Frame and CAN frame 

with 29 bit Identifier is called Extended Frame. This 

literature suggests method for assigning CAN Identifier for 

Standard Frame (i.e. CAN frame with 11 bit CAN ID). 

This paper suggests defining sub-fields within the available 

11 bits for CAN ID. Following sub-fields shall be defined 

within 11 bit CAN ID before assigning the value of CAN ID 

as explained in Fig. 3. 

 
Figure 3: Sub-fields in CAN Identifier of a Standard CAN 

Data Frame with 11-bit CAN Identifier 

 

Priority sub-field: This is a 2 bit sub-field within the 11 bit 

CAN ID in the highest significant part of CAN ID. As this is 

2 bit sub-field, priority can take value range from 0 to 3. 
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Priority levels 1 to 4 was assigned for each transmit signal in 

step 3. Refer the definition of priority level of transmit 

signal in step 3. Now, value of this sub-field shall be 

according to the priority level of the signals within the CAN 

frame, if all the signals within the CAN frame are of same 

priority level. Else if all the signals within the CAN frame 

are not of same priority level then value of this sub-field 

shall be according to the highest priority signal within the 

CAN frame.  

 

Table 1:  Priority sub-field 

 

 
 

Frame type sub-field: As shown in Fig. 3, the length of this 

sub-field is 2 bits and placed just adjacent to priority 

subfield. This sub-field can take value range from 0 to 3. 

Different sub-field values are assigned depending on 

different type and periodicity of frames. This is shown in the 

Table 2. 

 

Table 2:  Frame Type sub-field 

 

 
 

Function group sub-field: As shown in Fig. 3, the length of 

this sub-field is 3 bits in the lower significant part of CAN 

ID. So, this sub-field can take value range from 0 to 7. All 

individual transmitting ECUs in the network shall be 

classified under different function group according to 

criticality of the function groups and shall be assigned 

function group ID in this sub-field of CAN Identifier for 

every transmitting CAN frame. Table 3 provides different 

group IDs for different functions as commonly used in 

automotive domain. 

 

Table 3:  Function Group sub-field 

Transmit frame group sub-field: As shown in Fig. 3, the 

length of this sub-field is 4 bits in the lowest significant part 

of CAN ID. So, this sub-field can take value range from 0 to 

15. For a given priority, frame type and function group it is 

possible to have 16 different CAN frames with different 

CAN IDs. This sub-field shall act as a serial number field. 

Different serial number from this sub-field shall be assigned 

starting from integer value 0 (or binary value „0000‟) for 

different CAN frames under same priority, frame type and 

function group to generate different CAN Identifiers. This 

will result in 16 different CAN Identifiers for same value of 

priority sub-field, frame type sub-field and function group 

sub-field. 

For example, if any receiving ECU wants to filter all CAN 

frames with safety critical signals with 20 ms periodicity 

from chassis domain function group then as per proposed 

method, the value of different sub-fields within CAN ID 

will be as specified in Table 4. 

 

Table 4:  Sub-fields in CAN ID 

 

 
 

From the Table 4, we can derive the 11 bit CAN ID range as 

„0001001XXXX‟, where X represents Don't Care condition. 

So, in this example receiving ECU shall configure 

Acceptance Mask and Acceptance Code Registers as per 

Table 5. 

 

Table 5:  Acceptance Mask and Code Register 
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Step 7 

The last step is to distribute all the CAN frames transmitted 

by different ECUs with time in the network in such a way 

that the peak bus load is minimized. If an ECU transmits 

more than one CAN frames, then the 

ECU shall not transmit all the CAN frames in burst. This is 

because if any ECU transmits all of its different transmit 

CAN frames in burst, then the peak bus load will increase 

and also there will be a possibility that the receiving ECUs 

may be able to receive all the consecutive CAN frames in a 

bust resulting in loss of CAN frames. Hence this literature 

proposes the following. 

Each ECU shall transmit the highest priority CAN frame 

first. The time instant when the first message is transmitted 

shall be considered as zero reference. With respect to this 

zero reference, other CAN frames shall be transmitted with 

decreasing priority allowing sufficient time-gap between 

two different priority frames (with different CAN ID) 

transmitted by the same ECU. This shall be achieved by 

specifying offset time for every CAN frame transmitted by 

any ECU with respect to zero reference. 

Let us consider the following example. One ECU which 

shall transmit three CAN frames M1, M2 and M3. All the 

three frames are 20ms periodic. The highest priority CAN 

frame is M1 and the lowest priority CAN frame is M3 for 

the ECU under consideration. Then the instant when frame 

M1 is transmitted is the „zero reference‟ for frames M2 and 

M3. If the offset time for M2 is defined as 5ms and offset 

time for M3 is defined as 10ms, then the ECU under 

consideration shall transmit the frames M1, M2 and M3 as 

shown in Fig. 4. 

 

 
 

Figure 4: Offset Time between different CAN Frames (with 

different CAN IDs) to reduce peak bus load 

 

So, offset time aims to specify the time between different 

CAN frames with different CAN IDs transmitted by the 

same ECU to avoid burst transmission of all different CAN 

frames by the same ECU.  

CAN Calibration Protocol (CCP): 

 

Basics - 

In its most elemental form, the CAN Calibration Protocol is 

a monitor program. Similar to many earlier serial RS232-

type monitors and bootstrap loaders that provide basic read 

and write memory capabilities, CCP provides the same 

functionality using a standard protocol rather than a 

company-specific proprietary protocol. However, when one 

is using a rather high-speed CAN bus in comparison to some 

previous 9600 baud UART-based monitor, CCP provides 

the ability to access data at such a fast rate that it is possible 

to run an application at the same time. Using the right tool, 

developers now have a significant advantage over the earlier 

monitor methods. When one examines the dialog used by 

most monitor programs, it is the tool or PC that is the master 

of the commands sent into the ECU. For CCP there is no 

difference. The ECU does nothing without the master (Tool) 

initiating commands. Using the appropriate CCP messages, 

a CCP-compliant tool can read data from the ECU and can 

write data into the ECU. 

However, this is only CAN Calibration Protocol's minimum 

capability. CCP includes several additional monitor 

commands, and provides several new features including 

automatic data acquisition processing based on events or 

periodic updating, flash programming and data security. 

Because there is no requirement to use all its features, CCP 

is a scalable protocol. 

 

CCP Communication: 

Using only two CAN identifiers for message transfers, CCP 

uses a specific conversation or dialog to accomplish each 

designated function. Each dialog is a collection of 

exchanged messages between a master, the calibration or 

development tool, and a slave ECU. Most CCP dialog 

always uses a master/slave form of conversation. The tool 

(or master) always initiates the conversation with a single 

CAN message, and once received, the ECU (or slave) is 

then responsible for responding with a single CAN message. 
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Basic CCP Commands – One of the CAN Identifiers is used 

to send information from the tool to the ECU. This 

command is defined from the ECU‟s point of view as the 

Command Receive Object (CRO). The CRO contains 

command information and the related parameters needed for 

the command. After the ECU receives the CRO, the CCP 

driver processes the command code within the CRO. Then, 

internal functions or data transfer between the tool and the 

ECU can occur. 
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CCP Commands: 

 

The following table shows an overview of all CCP 

commands used in the CRO: 

 
CRO Message – The data field for each CAN Identifier used 

with CCP is limited to 8 data bytes because CCP is based on 

CAN. The CRO uses each of the data bytes for specific 

items of information based on the command. 

 

 
 

Figure 7: Structure of the CRO Message 

 

The first byte of the CRO Message is a number that 

corresponds to the command as defined in the CCP 

specification. The second byte is a counter from the tool to 

track the current command that was issued. This same value 

will also be used in the response from the ECU to the tool. 

Basic CCP Response – The other CAN Identifier is used to 

send information from the ECU to the tool. This command 

is defined from the ECU‟s point of view as the Data 

Transmission Object (DTO). 

 

 
 

Figure 8:  Data Transmission Object 

 

Three types of DTOs are defined by the CCP specification. 

These three types are the Command Return Message 

(CRM), the Event Message, and the Data Acquisition 

Message (DAQ). 

CRM-DTO Message – The Command Return Message 

(CRM) is a message sent by the ECU in response to a CRO. 

The CRM can be a simple acknowledgement to the CRO, or 

it can contain actual requested data. The CCP specification 

describes in detail the content of each CRM for each CRO. 

 

 
 

Figure 9: Command Return Message 

 

Event Message – The Event Message is a specific type of 

DTO used to inform the tool of the internal status changes of 

the ECU. This information can then be used to invoke error 

recovery or other services. The Event Message allows the 

ECU to report any errors to the tool that have occurred since 

the last CRO was sent by the tool. The CCP specification 

describes the available error codes. 

 
 

Figure 10:  Event Message 

 

The CRM and the Event Message have the same structure 

for the first three bytes of the message. The first byte is the 

Packet Identifier (PID). A CRM has the value 0xFF, and the 

Event Message has the value 0xFE. The second byte is the 

error code, and the third byte is the command counter value 

sent by the tool in the last CRO message. The remaining 

bytes are used for data relating to a particular response. 

 

 
 

Figure 11: Structure of CRM and Event Message 

 

DAQ-DTO Message – The Data Acquisition (DAQ) 

message is a specific type of DTO used to send 

measurement data to the tool. Before the ECU can send 

DAQ messages, the tool must send initialization messages. 

The ECU is informed in the initialization process of which 

measurement data needs to be sent to the tool. The tool also 

sends information on whether the measurement data is event 

driven or periodically sampled. Then the measurement data 

values can be sent to the tool without the tool first having to 

send a CRO to request the information. 
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Figure 12: Data Acquisition Message 
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Duri

ng the initialization process tables are setup in the ECU to 

identify the location of the measurement data. Each table 

can contain up to seven memory addresses. The table is then 

assigned a unique packet identifier PID that is used for the 

first byte of the DAQ message. The other seven bytes are 

used to send the requested data to the tool. 

 

 
 

Figure 14:  Structure of Data Acquisition Message 

 

Object Descriptor Tables – The tables that are used to 

organize the location of the measurement data are called 

Object Descriptor Tables (ODTs). An ODT describes the 

contents of a single CAN message for data acquisition. Each 

ODT stores up to seven address locations where the 

measurement data is stored. The unique Packet Identifier 

PID is then assigned to the ODT to identify the data. Since a 

unique PID is needed to identify the measurement data for 

each ODT, and the number of data bytes that is sent back 

per ODT is limited to seven data bytes, multiple ODTs may 

be necessary to store all the requested measurement data. A 

DAQ list contains all the ODTs for a particular event or time 

period. Multiple DAQ Lists are needed when data needs to 

be acquired based on different events or time periods. 

 

 
 

Figure 15: Overview of DAQ Lists with Multiple ODTs 

 

The ECU receives the CAN message with the SHORT_UP 

command. The ECU then responds to this message with the 

appropriate CRM. Figure 14 shows the data needed for the 

SHORT_UP response. The first byte (byte 0) of the 

response is a Packet Id of 0xFF. This indicates that the DTO 

is a CRM. If the ECU is able to respond successfully to the 

request, the second byte (byte 1) is the command return code 

with the value 0x00. (The complete list of command return 

codes are listed in the CCP specification.) The third byte 

(byte 2) is the command counter value received in the CRO. 

The last five bytes contain the actual requested data. In the 

above example, only four data bytes were requested by the 

CRO; therefore, the tool disregards the data in the last byte 

(byte 7).  

The CCP driver is developed for the ECU to support the 

commands described in the CCP specification. The 

commands must be received from the CAN bus, and 

processed in the ECU to provide the appropriate response 

which must be sent back out on the CAN bus. Two methods 

of obtaining measurement data are possible. A simple 

polling method can be implemented that sends data only 

after a request message from the tool. The DAQ list can be 

implemented when more throughput of data is needed or 

when the data needs to be obtained synchronously. 

The CCP driver can be implemented with all the commands 

described in the CCP specification, or it can be scaled down 

to include only the commands needed for a particular 

implementation. The CCP implementation in the ECU can 

be broken down into two parts. The first part is a command 

processor, which is able to receive the required CRO 

commands and send the appropriate CRM. The second part 

involves the DAQ processor, which is responsible for 

sending the required DAQ list information at the appropriate 

time. Figure 16 illustrates the two main components of the 

CCP Driver. 
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Figure 16: CCP Communication 

 

In summary, the ECU receives commands codes and the 

related parameters in the Command Receive Object (CRO) 

to carry out internal functions or memory transfers. The 

Data Transmission Object (DTO) is used by the ECU to 

respond to the CRO, to indicate any errors conditions, and to 

transmit measurement data to the tool. 

 

CCP Applications: 

 

Basic development uses for CCP include 

• Real-time ECU information (basic read and write 

function). 

• Real-time access of ECU parameters (data acquisition). 

• Real-time adjustment of ECU process algorithms 

(Calibration). 

• In system or in-vehicle evaluation of design concepts. 

• Evaluation of engineering design modifications. 

• In system (or in-vehicle) Flash Programming. 

• Emulation-type operation beyond the lab bench. 

 

Coupled with the right tools, CAN Calibration Protocol is 

suitable for several module development activities. CCP 

allows development outside of the traditional software 

engineering environment. Beyond the engineer's desk and 

the engineering lab, module development on the road or on 

the test track is not only possible but several companies are 

already at this advanced stage. 

 

CCP Driver Implementation: 

 

The CCP Driver must be implemented in the ECU before 

any interaction with the tool can occur. The CCP commands 

will be sent in a particular order by the tool to elicit the 

appropriate information from the ECU. The ECU only needs 

to implement the correct responses to each command as 

required by the CCP specification. The CONNECT 

command must be processed like other CCP commands; 

however, the ECU must also store additional information 

about the status of the connection. 

As required in the specification, the ECU must not respond 

to any CCP messages unless it has processed a CONNECT 

command with the proper station address. Therefore, the 

CCP driver must store the current status of the CCP 

connection, so that commands can be ignored or 

acknowledged as required by the CCP specification. 

 

Initialization Sequence – In a typical tool application, the 

tool sends the connect command with the station address of 

the ECU. The ECU responds with the correct CRM-DTO if 

the station address is correct. Next, the 

GET_CCP_VERSION command can be issued to allow the 

tool to determine if the ECU is compatible with CCP 

implementation 2.0 or 2.1. Then, the EXCHANGE_ID 

command can be issued for automatic session configuration. 

The ECU responds by sending the Station Identification 

name‟s length and setting the Memory Transfer address to 

the appropriate memory location with the Station 

Identification name. The tool can then request the Station 

Identification name. Each version of the ECU software can 

be described by a different database. The EXCHANGE_ID 

can be used to make sure the tool database version matches 

the ECU software version. Figure 17 illustrates this 

sequence. 

 

 
 

Figure 17: Example Initialization Operations 

 

DAQ Operations – If the DAQ list is used for data 

acquisition in a typical tool application, the tool must first 

inquire about the DAQ storage information in the ECU. For 

example, the user may request information based on two 

DAQ lists, but the ECU has only been configured to store 

information for one DAQ list. Once the tool determines that 

the setup in the ECU is sufficient for the current requested 

measurement data, the DAQ lists can be configured. Then 

the command to start the DAQ information transfer is sent 

by the tool. The ECU must continue to send the required 

measurement data until the DAQ STOP command is 

received from the tool. Figure 18 illustrates an example of 

the DAQ operations sequence. 

 

 
 

Figure 18: Example DAQ Operations 
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Disconnect – When the connection from the tool to the ECU 

is no longer needed, the tool can issue the DISCONNECT 

command. The CCP specification allows for either a 

temporary disconnect or for a complete termination of the 

calibration session. 

 

CCP Implementation Requirements: 

To implement CCP, the software developer needs the 

following three items: 

• CCP specification document. 

• CAN bus connection to the ECU. 

• CCP Software Driver. 

Figure 19 illustrates the functionality needed for CCP CAN 

message reception. 

 
 

Figure 19: CCP CAN Message Reception 

 

The CCP driver code must also be able to interface to the 

CAN driver code for the transmission of CCP messages. 

When the CCP driver calls a function in the CAN driver to 

transmit the CCP message, the CCP driver needs to be 

informed when the message is transmitted successfully. 

When the CAN driver calls a function (ccpSendCallBack) to 

inform the CCP driver that the last CCP message was 

transmitted successfully, the CCP driver is then able to call 

the CAN driver function to send another message. 

This confirmation process prevents the CCP Driver from 

overloading the CAN transmit buffer with CCP messages. 

This also allows the application some control over how 

often the CCP messages are sent if the reception and 

transmission is integrated into the operating system of the 

application. Figure 20 illustrates the functionality need for 

CCP CAN message transmission. 

 

Figure 20: CCP CAN Message Transmission 

 

Figure 21 gives an overview of the interfaces needed to 

implement the sample CCP driver. For more information on 

implementing the free CCP driver provided by Vector, 

please refer to the CCP Driver Implementation in Electronic 

Controls Units in the Reference section. 

 

 
 

Figure 21: CCP Sample Driver Interface 

 

CCP Resource Requirements – The CCP software driver 

will consume resources such as RAM, ROM and CPU time 

in the ECU. The code size of the CCP software driver 

depends on which optional features are implemented. The 

following list indicates the resource requirements for an 

implementation with 1 DAQ List and 3 ODTs. This allows 

for storing of up to 21 bytes of data in an intermediate 

buffer. 

CCP Performance Ratings – CCP performance depends on a 

number of factors. The response latency time of the services 

in the ECU affects the CCP performance. In other words, 

the amount of time allocated by the ECU operating system 

for the CCP driver to perform its functions greatly affects 

the performance of the CCP driver. In addition, CAN bus 

conditions such as bit rate, busload, and bus priority level of 

the CCP message also affect the performance of the CCP 

driver. With a bit rate of 500 kBit/sec and typical load 

conditions, a burst memory transfer of ~5-10 kBytes/s and 

data acquisition rates of ~25 kBytes/s were obtained. A 

burst memory transfer would include uploading calibration 

values and flash programming. The data acquisition rate is 

for the synchronous data acquisition of 100 values every 10 

msec. Each of the 100 values were two bytes in length. 

These results were achieved with an implementation in a 

Siemens 80C176 16 MHz processor. 

 

CAN Messages Handler – Development Process: 

Traditional Development Approach – In the early phase of a 

typical Automotive ECU software development project, it 

was necessary to make the initial analysis on the vehicle 

ECU‟s CAN network. The above phase is characterized by a 

large effort to write a specification to describe the CAN 

interfaces for the new ECU that must be in compliance with 

other connected ECUs. Therefore, the System Engineer 

prepares a specification document for the CAN Interface 

based on the vehicle‟s pre-existing CAN network database. 

 

Document–based specifications are shared among different 

teams, each for that team‟s ECU. Errors due to 

misunderstanding between them may have impacts up to the 

Implementation phase and then only be detected during the 

System Testing and Validation phase. Based on system 

engineering documentation, the software engineers 

manually write the code relevant to the CAN Messages 

Handler, increasing the risk of propagating errors 

throughout the next process phases and of having additional 
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implementation errors. This process suffers from a variety of 

drawbacks, including the difficulty of keeping the 

documentation updated. For the OEM, this process has the 

disadvantage that the software has to be newly developed 

for each ECU development project, both if the supplier 

changed and if the OEM requires adding a new ECU. 

 

 
 

 

Efficient Development Process - One objective of the 

Embedded Software Development is to participate to the 

development of the ECU's application software, with 

particular emphasis on OEM strategic functions. A second 

objective is to apply an efficient development process for 

software development and validation. The approach used 

implied the development and early validation of the 

embedded software in a graphical design and subsequent use 

of automatic C code generation and its reuse in different 

ECUs with minor migration effort.  

 

Vehicle ECU Network Database – During the vehicle's 

evolution from a simple ECU network to a very complex 

ECU network, the OEM system engineers are defining the 

Network Nodes and storing all information in a specific 

network database, to be updated in case of change on the 

vehicle network. Usually the CAN Network Database, 

specific for each vendor, contains CAN message definitions 

for an entire vehicle in terms of message identification, start 

bit, number of bits for each signal within a given message, 

byte order (Intel/Motorola), data type (signed, unsigned, 

etc..), conversion rules, applicable range, default value, 

comment. Commercial tools, such as Vector products, 

facilitated the system engineers' work. The system engineers 

use the database to generate the specification document and 

to perform the System Test, where they verified and 

validated the Vehicle ECU's network. 

 

The CAN-DB Import Tool that creates a configuration file 

in a specific MATLAB format from a standard CAN 

database file which includes all the communication 

information (for example the bit meaning for each byte of 

each CAN Message). Offline importing is scalable, supports 

multiple platforms and it is independent of the standard (for 

example J1939). 

The CAN Frame Configurator allows the system software 

engineers to configure (through a user-friendly GUI) the 

process-chain (filter, fault check, recovery) applied to each 

signal coming from (sent to) the CAN bus. In other words, 

the system software engineer can easily use the data (bytes) 

coming from the Rx CAN messages and create the data for 

the Tx CAN messages. Individual words, bit strings, and 

word segments within a CAN message can be defined as 

data fields, allowing the binary data passed onto the bus to 

be converted into a meaningful format. Data fields can be 

named (e.g. vehicle speed or engine speed) and relevant unit 

measurements can be specified and used when requested by 

the application software. 

  

The adaptation process required an appropriate CAN 

interface implementation, both in terms of CAN Driver and 

CAN Message Handling, according to the target platform's 

basic software.  

Its complete application to our scenario should have 

involved the following development phases: 

 ECU network redefinition in terms of CAN network 

database adaptation. 

 CAN messages specification for the new ECU. 

 Manual implementation (manual coding, unit test and 

SW documentation preparation). 

 System testing using Hardware-In-the-Loop. 

 System testing on the vehicle. 

 

Timing Aspects of CAN: CAN uses non-destructive bitwise 

arbitration process to select a message when message 

collision occurs. The simultaneously transmitted messages 

are allowed to enter the bus, while the process monitors their 

identifiers bit by bit. Message transmissions can go on, as 

long as the messages‟ identifier bits are the same. Once the 

difference is detected, the message with a passive bit (1) will 

have to stop, while the message with dominant bit (0) 

continues. The message which is backed off will be 

transmitted again as soon as the CAN bus is free. 

By giving each data a unique identification number, same 

priority message collision where all the messages have to be 

taken off line, can be avoided. In practice, more important or 

urgent messages are given lower identification numbers, 

which give them higher priorities to be transmitted. Under 

the CAN protocol, the message with the highest priority 
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always get the first access to the bus, which effectively 

guarantees its delivery time. It can be seen that a problem 

can arise when a large number of high priority messages are 

transmitted, and lower priority messages will have to keep 

backing off transmission. This may cause long delays before 

lower priority messages can be sent. 

The vehicle dynamic control systems considered here are 

safety related. Hence it is vital that their control related 

messages, for example a wheel speed data, arrive in time. It 

is, therefore, important that the CAN message delays of the 

above vehicle electronic architectures are examined. An 

excessive delay of signal transmission is a delay longer than 

the period of the transmission, causing the delayed data to 

be obsolete. The results of message missing or late arrival, 

forcing ECUs to use previous, out-of-date data could be 

hazardous. Thus, a simulation of CAN data transfer between 

ECUs had been carried out. 

 

Simulation Data 

 

In order to realistically simulate this operation, real 

information on data signalling in the target vehicle is 

needed, including all the other messages that would be using 

the CAN bus. The signals include all classes (Class A, B and 

C), characterised as low, medium and high speed messages, 

respectively. 

.  

Figu
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From ECUs linked by arrows to Bus Queue represents, data 

queuing to be transmitted from ECUs onto the CAN bus. An 

ECU will let its signals join a queue one by one, equivalent 

to an ECU attempting to transmit one signal at a time. More 

than one signals in the Bus Queue at a time symbolises 

message collision. The Bus Queue arranges incoming 

signals in order according to their priority, equivalent to 

CAN message contention. The highest priority signal is put 

in front of the queue. The Bus Queue then let the highest 

priority signal onto the CAN bus (displayed as a door 

image) once the bus is free. Each signal occupies the CAN 

bus for 64 ms, equal to the time taken to transmit the 8 byte 

message. 

 

Simulation Run 

 

A simulation was run for an equivalent of 1 real-time second 

at time. One second covers the periods of all the signals 

except for signal no. 117, whose period is 10s and hence of 

little significant to the CAN bus load. Since all the signals 

are assumed periodic, any longer simulation run would give 

a repetitive result to the 1 second run. 

For each architecture, the simulation was run 100 times with 

different sets of random numbers. Each simulation was run 

for 1 real-time second. A number of simulations were run in 

order to simulate different possibility of messages arriving 

on the CAN bus at different times. 

Each simulation involves 4800-6800 messages getting 

access to the CAN bus. The time which the two groups of 

class C signals (of period 5 and 10ms), which are for real-

time control, wait in the CAN Bus Queue plus the 

transmission time was collected. This is equivalent to the 

signal time delay associated with CAN in real applications. 

 

Working with P-CAN: 

 

The PCAN-USB adapter from Peak-System Technik 

enables simple connection to CAN networks. Its compact 

plastic casing makes it suitable for mobile applications. 

The opto-decoupled version guarantees galvanic isolation of 

up to 500 Volts between the PC and the CAN side. 

The package is also supplied with the CAN monitor PCAN-

View for Windows® and the programming interface PCAN-

Basic. 

 

         
Figure 23: CAN Protocol Adapter 

 

Figure 24: PCAN View 1. 
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N-USB adapter provides one CAN channel at computers 

with USB ports. Device drivers and programming interfaces 

exist for different operating systems, so programs can easily 

access a connected CAN bus. 

 

Results and Analysis 
 

The frequency distribution of the CAN delay of the two 

groups of class C signals are shown in Figures 26 and 27. 

 
 

Figure 26: Frequency Distribution of CAN Transmission 

Time of 5 ms Period Class C Signals 

 

 
Figure 27: Frequency Distribution of CAN Transmission 

Time of 10 ms Period Class C Signals 

 

From Figures 26-27, it can be seen that the majority of the 

two groups of class C signals are transmitted within 0.7 ms. 

The minimum possible CAN transmission time (no 

collisions) for each signal is 0.64 ms. This indicates that 

those signals are transmitted virtually without delay. 

 

This can be seen from the higher percentage of signals with 

transmission time longer than 17 ms (the last bars on the 

chart) in Figure 6 than those in Figure 26. Also the 10 ms 

period signals have experienced longer worst case delay 

than the 5 ms signals. This could be expected, since the 10 

ms period signals have lower priority than the 5 ms signals.  

 

Conclusion: 

 

The main object of this literature is to optimize CAN signal 

packing into CAN frames, to assign CAN Identifiers into 

CAN frame and distribute these CAN frames in the network 

with time in such a way that bus-load of CAN network as 

well as ECU load for all receiving ECUs in the CAN 

network are minimized. 

It can be concluded that the proposed method increases the 

number of signals which can be transmitted and received by 

different ECUs in the network. This reduces the need to 

introduce another sub-networks and network gateways just 

to manage the bus-load. This results in reduction of 

engineering effort and cost for network development. 

Aside from advantage of using a standard protocol rather 

than using a company-specific proprietary solution, CCP 

provides a wide range of functionality to help both the OEM 

and the module supplier in the development of electronic 

modules. 

Having a complete set of tools to handle module calibration, 

test, measurement, diagnostic, and flash programming 

activities all within one protocol is a big technical advantage 

for the software engineer. 

 

Another advantage can be concluded that proposed method 

ensures that all signals will reach receiving ECU from 

transmitting ECU within maximum allowed latency time for 

these signals. This improves performance of the distributed 

functionalities and customer satisfaction. 
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