
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issues 7 July 2016, Page No. 17256-17259

Pranjal Mathur, IJECS Volume 5 Issue 7 July 2016 Page No.17256-17259 Page 17256

Explicit Parallel Instruction Computing
Pranjal Mathur

Shiv Nadar University, School of Engineering and Computer Science

Greater Noida, India

Pm784@snu.edu.in

Abstract: VLIW (Very Long Instruction Word) machines are highly parallel ILP (Instruction Level Parallelism) based

architectures that offer an alternative to scalar sequential architectures like CISC/RISC. With VLIW, the burdensome task of

dependency checking by hardware logic at run time is removed and delegated to the compiler. HP and Intel introduced a new

style of instruction set architecture called EPIC (Explicitly Parallel Instruction Computing), and a specific architecture called

the IPF (Itanium Processor Family). EPIC is like VLIW, with extra cache prefetching instructions. EPIC combines the

capabilities of both Superscalars processors and VLIW processors. Through this paper, we will try to understand the

characteristics of EPIC processors which make them distinguishable.

Keywords: VLIW (Very Long Instruction Words), RISC, CISC, ILP (Instruction Level Parallelism), Superscalars, OpCode,etc

1. Introduction

Over the past two and a half decades, the computer industry has

grown accustomed to, and has come to take for granted, the

spectacular rate of increase of microprocessor performance, all

of this without requiring a fundamental rewriting of the

program in a parallel form, without using a different algorithm

or language, and often without even recompiling the program.

For the time being at least, instruction-level parallel processing

has established itself as the only viable approach for achieving

higher performance without major changes to software.

Instruction level parallelism (ILP) is the initiation and

execution within a single processor of multiple machine

instructions in parallel. Instruction-level parallelism (ILP)

results from a set of processor and compiler techniques that

speed up execution by causing individual RISC-style

operations to execute in parallel. The two most important types

of ILP processors, to date, differ in this respect. Superscalar

processors are ILP processor implementations for sequential

architectures—architectures for which the program is not

expected to convey and, in fact, cannot convey any explicit

information regarding parallelism.

Since the program contains no explicit information about

available ILP, if this ILP is to be exploited, it must be

discovered by the hardware, whereas VLIW machines are

highly parallel architecture that offer an alternative to

multiprocessor but have a tightly coupled, single flow control

mechanism much like clean very parallel horizontal microcode.

Programs for VLIWs must specify fine grained hardware

control. VLIW CPUs are usually constructed of multiple RISC-

like functional units that operate independently. It is the

responsibility of the compiler to determine which operations

can be grouped together and where they must be placed in this

sequence of long instruction words. EPIC, a new generation of

ILP can be considered as an evolved form of VLIW. EPIC

(Explicitly Parallel Instruction Computing) is a kind of RISC.

It’s another level of the Instruction Level Parallelism that we

will describe in this paper. Before that lets look a compiled

form of tasks that are required for the processing of an

instruction. They are:

 To check for the dependent instructions in ordered to find

which of the instructions can be grouped together to be good

for ILP

 Instruction assignment to the various hardware.

 To determine when the instruction starts executing [2].

Given below the table which describes the role of hardware or

compiler in the various forms of ILP namely: Superscalars,

Very Long Instruction Words and The EPIC.:

 Grouping Assignment Start of
Execution

Superscalar Hardware Hardware Hardware

VLIW Compiler Compiler Compiler

EPIC Compiler Hardware Hardware

At one hand, the superscalar processors are kind of

conventional, non-parallel/sequenced instruction set in which

the semantics of a program is based on a sequential machine

model. It requires hardware support for all the stages of

execution of the program namely: fetching, decoding,

executing, etc. however, the necessary condition is maintains

i.e. the semantics of the instruction and the program is

maintained. At the other hand, VLIW has all its stages been

handled by the compiler itself. Implementing a VLIW

computer requires the layout and implementation of long

instruction words which are required to be given with separate

operation for each function unit on each cycle. The subset of

the instructions which are not related, hence independents are

grouped together in a single long instruction word and the

distinct functions are assigned to the operational units by

placing them in certain slots of a VLIW. Between VLIW and

Superscalars is the EPIC architectural style, where the compiler

is responsible for determining the group of unrelated set of the

instructions and this information is communicated through the

explicit information in the instruction set.

This is important to note that EPIC is similar to Superscalars in

terms of their ability to be compatible across different

implementations. However, it doesn’t require specific hardware

for the detection of the interdependency of instructions. Hence

DOI: 10.18535/ijecs/v5i7.13

Pranjal Mathur, IJECS Volume 5 Issue 7 July 2016 Page No.17256-17259 Page 17257

EPIC provides the better halves of both the other two

implementations for Instruction Level Parallelism.

2. Why EPIC?
Before getting into details of EPIC implementation, its features

and others, let’s see why the EPIC architecture was developed

and what the motivation behind that was. HP and Intel have

recently introduced this style of instruction set architecture or

more specifically instruction level parallelism called EPIC

(Explicitly Parallel Instruction Computing). The Very Long

instruction word kind of architecture is able to get the required

high level of instruction level parallelism. Along with this, it

provides lesser complexity in terms of hardware requirements.

VLIW being specific for operations like numerical computing,

etc. along with the shortcomings with respect to branch-

intensive apps brings a need to improve the architectural

designs, hence the EPIC. Also, the existing VLIW architecture

is unable to provide acceptable object code across the various

processors. Hence, EPIC is focused to provide more general

architecture for various upcoming/ existing family of

processors.

However, there are certain challenges for the development and

implementation of EPIC architecture and they are as follows:

1.1 Development of the architecture which is applicable to

general purpose computing:

 Find substantial parallelism in “difficult to parallelize”

scalar programs

 Provide compatibility across hardware generations

 Support emerging applications

1.2 Compiler must find or create sufficient Instruction Level

Parallelism

1.3 Combine the best of both the attributes of VLIW &

superscalar RISC.

1.4 Scale architectures for modern single-chip implementation.

The above given implementation requirements drive the main

idea behind the EPIC and they are:

1.1 Compile does the scheduling, permitting the compiler to

play the statistics (profiling).

1.2 Hardware supports speculation:

 Address the branch problem: predicted execution and

many other techniques.

 Addressing the memory problem: cache specifiers,

prefetching, and speculation on memory alias.

3. Epic instruction set architecture

Beside the architectural specifications, the design and the

format of the instruction must take care of the following:

description of the operation code (opcode) repertoire, data

structure, types, registers and their usage [1].

However, all the ISAs must bind to the following set of points

given below:

 Compiler provides the basic execution plan of the instruction

while the architecture must be able to support it.

 The architecture should be able to assist the compiler in

exploiting statistical ILP

 The communication of the POE is communicated to the

hardware, hence it must be supported by the architecture of

EPIC IS.

4. EPIC Characteristics
Following are the characteristics that defines the EPIC [2]:

4.1 Explicit Parallelism

One of the characteristics of the EPIC architecture is that, they

provide explicit information on independent instructions in the

program. In Intel Itanium Processor Family, implementing

EPIC, a 5-bit number identifies the type of the instruction and

also defines the architectural stops between the groups of

instructions. Five other attributes of EPIC architectures beyond

instruction grouping. The first two deal with eliminating and/or

speeding up branching, the third with cache locality

management, and the final two with starting load instructions as

early as possible.

4.2 Predicated execution:

The instructions can be conditioned or predicated on a

true/false value in a predicate register to identify if the

instruction is conditional branch instruction. Only those

instructions with a true predicate are allowed to write into their

destination registers. Intel Itanium Processor Family provides

64 predicate registers where one register can hold one bit (true

or false) and is set by compare instructions.

4.3 Compiler controlled memory hierarchy:

The latency due to instruction like LOAD can be

predetermined and is told to the hardware before execution

along with the probable location of load and stored data items.

Intel Itanium Processor Family provides hints for LOAD,

STORE and FETCH type of instructions. Along with this, it

provides prefetching stride information by use of base update

addressing mode.

4.4 Data speculation:

Aliasing (aliasing describes a situation in which a data location

in memory can be accessed through different symbolic names

in the program) limits the compilers to know the memory

addresses to which the instructions refer beforehand. In the

absence of exact alias analysis, most compilers must settle for

safe but slower code. EPIC architectures provide speculative

loads that can be used when an alias situation is unlikely but yet

still possible. Intel Itanium Processor Family provides the

facility to check the advanced load and advanced load

instructions using Advanced Load Address Table.

Some other characteristics provided by the EPIC (IPF (Intel

Itanium Processor Family)) Architecture are:

 The IPF architecture uses the predicate registers to record the

results of comparisons and includes eight branch registers for

use in prefetching to control the unbundled branches.

 IPF provides speculative load and speculation check.

5. The EPIC philosophy

One of the main goal of EPIC is to retain structural ideas of

VLIW of statically forming the plan of execution, and at the

same time to augment it with features akin to those in a

superscalar ILP processor that would help it to better cope with

dynamic factors, which traditionally limited VLIW-style

parallelism.

The code for a superscalar processor consists of an instruction

sequence that yields a correct result if executed in the stated

DOI: 10.18535/ijecs/v5i7.13

Pranjal Mathur, IJECS Volume 5 Issue 7 July 2016 Page No.17256-17259 Page 17258

order. The code specifies a sequential algorithm and, except for

the fact that it uses a particular instruction repertoire, has no

explicit understanding of the nature of the hardware upon

which it will execute or the precise temporal order in which

instructions will execute.

In contrast, VLIW code provides an explicit plan for how the

processor will execute the program, a plan the compiler creates

statically at compile time. The code explicitly specifies when

each operation will be executed, which functional units will do

the work, and which registers will hold the operands. The

VLIW compiler designs this plan of execution (POE) with full

knowledge of the VLIW processor, so as to achieve a desired

record of execution (ROE)—the sequence of events that

actually transpire during execution.

To accomplish these goals, EPIC has the following

characteristics [2].

5.1 Designing the plan of execution at compile time:

EPIC puts the burden of designing the plan of execution on the

compiler. Otherwise, a processor’s architecture and

implementation can obstruct the compiler in performing this

task. But EPIC processors have features that instead assist the

compiler.

The essence of engineering a plan of execution at compile time

is to reorder the original sequential code to best take advantage

of the application’s parallelism and make best use of the

hardware resources to minimize the execution time. Without

suitable architectural support, this reordering can violate

program correctness.

Thus, because EPIC places the burden of designing the plan of

execution on the compiler, it must also provide architectural

features that support extensive code reordering at compile time.

5.2 Permitting the compiler to play the statistics:

Certain things that necessarily affect the flow of execution can

only be known at runtime. For eg, a compiler cannot know

which way a conditional branch will go, and, when scheduling

code across basic blocks in a control flow graph, the compiler

cannot know for sure which control-flow path is taken. In

addition, it is practically impossible to make a schedule

statically that jointly optimizes all the parts of the program.

An important part of the EPIC philosophy is to allow the

compiler to play the odds under such circumstances the

compiler constructs and optimizes a plan of execution for the

likely case. However, EPIC provides architectural support such

as control and data speculation to ensure program correctness

even when the guess is incorrect.

When the gamble does not pay off, program execution can

incur a performance penalty. The penalty is sometimes visible

within the program schedule.

Or, the penalty may be incurred in stall cycles that are not

visible in the program schedule.

5.3 Communicating the POE to the hardware

To do so, the instruction set architecture must be rich enough to

express the compiler’s decisions as to when to issue each

operation and which resources to use. In particular, it should be

possible to specify which operations are to issue

simultaneously.

When communicating the plan of execution to the hardware, it

is important to provide critical information at the appropriate

time. A case in point is a branch operation, which—if it is

going to be taken—requires that instructions start being fetched

from the branch target well in advance of the branch being

issued. Rather than providing hardware to deduce when to do

so and what the target address is, the EPIC philosophy provides

this information to the hardware, explicitly and at the correct

time, via the code.

Cache hierarchy management and the associated decisions as to

what data to promote up the hierarchy and what data to replace.

Such policies are typically built into the cache hardware. EPIC

extends its philosophy of having the compiler orchestrate the

record of execution to having it also manage these micro

architectural mechanisms.

6. Architectural features supporting EPIC

EPIC provides architectural features that permit programmatic

control of mechanisms that the microarchitecture normally

controls.

EPIC uses a compiler to craft statically scheduled code that

allows a processor to exploit more parallelism, in the form of

wide issue-width and deep pipeline-latency, with less complex

hardware. EPIC permits the elimination of complex logic for

issuing operations out of order by relying upon the issue order

specified by the compiler. EPIC philosophy permits the

elimination of runtime dependence checks among operations

that the compiler has already demonstrated as independent [3].

6.1 Static Scheduling

A multi operation instruction is one that specifies many

operations simultaneously. Each operation is comparable to a

conventional RISC/CISC instruction.

The compiler identifies operations that can be scheduled

simultaneously and packages them in a multi operation

instruction. When issuing a MultiOp, the hardware does not

need to perform dependence checking between its constituent

operations. Furthermore, a notion of virtual time is associated

with EPIC code; by definition, exactly one MultiOp instruction

is issued per cycle of virtual time. Virtual time differs from

actual time when runtime stalls that the compiler did not

anticipate are inserted by the hardware at runtime.

Traditional sequential architectures define execution as a

sequence of atomic operations; conceptually, each operation

completes before a subsequent operation begins. Such

architectures do not entertain the possibility of one operation’s

register reads and writes being interleaved in time with those of

other operations.

With MultiOp, operations no longer are atomic. When

executing operations within a single MultiOp, multiple

operations may read their inputs before any operation writes its

output. Thus, the non-atomicity and the latencies of operations

are both architecturally exposed.

6.2 Addressing the branch problem

Most applications of normal use are very branch intensive.

Latency of branches are measured in cycles. Branch operations

have a hardware latency that extends from when the branch

begins execution to when the instruction at the branch target

begins execution. During this latency, several actions occur:

 The hardware computes a branch condition

 forms a target address

 fetches instructions from either the fall-through or taken path

 And then decodes and issues the next instruction.

Although conventional ISAs specify a branch as a single

operation, its actions are actually performed at different times,

which span the branch’s latency.

DOI: 10.18535/ijecs/v5i7.13

Pranjal Mathur, IJECS Volume 5 Issue 7 July 2016 Page No.17256-17259 Page 17259

EPIC allows static schedules to achieve better overlap between

branch processing and other computation by providing

architectural features that facilitate three capabilities:

 Separate branch component operations, which specify when

each of the branch actions is to take place;

 Support for eliminating branches; and

 Improved support for static motion of operations across

multiple branches.

6.2.1 Unbundled branches: EPIC branches unbundle into

three components:

 A prepare-to-branch, which computes a branch’s target

address;

 A compare, which computes the branch condition

 And an actual branch, which specifies when control is

transferred.

6.2.2 Control speculation: Branches present barriers to the

static reordering of operations needed for efficient schedules.

In addition to predicated execution, EPIC provides another

feature that increases operation mobility across branches:

control speculation.

6.3 Addressing the memory problem

EPIC provides architectural mechanisms that allow compilers

to explicitly control the motion of data through the cache

hierarchy. These mechanisms can selectively override the

default hardware policies.

6.3.1 Cache specifiers: Unlike other operations, a load can

take on a number of different latencies, depending on the cache

level at which the referenced datum is found. EPIC provides

load operations with a source cache specifier that the compiler

uses to inform the hardware of where within the cache

hierarchy it can expect to find the referenced datum and,

implicitly, the assumed latency. In order to generate a high

quality schedule, the compiler must do a good job of predicting

what the latency of each load will be (and then communicate

this to the hardware using the source cache specifier). This it

can do by using various analytical or cache miss profiling

techniques.

6.3.2 Data speculation: Another impediment to creating a

good plan of execution results from low-probability

dependencies among memory references. Often, a compiler

cannot statically prove that memory references are to distinct

locations and must conservatively assume that the alias, even if

in reality this is generally not so. Data speculation allows the

compiler to generate program schedules that assume that a

store and a subsequent load do not alias even though there is

some small chance that they do.

Conclusion

The new era of faster computing is supported by various

instruction set architectures. EPIC is one of them, meant for

instruction level parallelism. It combines traditional and new

set of ideas to bring out the features required for faster,

uninterrupted execution of program. The EPIC philosophy—in

conjunction with the architectural features that support it

provides the means to define ILP architectures and processors

that can achieve higher levels of ILP at a reduced level of

complexity across diverse application domains. EPIC

architectures can claim to combine the best attributes of

superscalar processors (compatibility across implementations)

and VLIW processors (efficiency since less control logic).

EPIC exposes various mechanisms at the architectural level so

that the compiler can control these dynamic mechanisms, using

them selectively where appropriate, hence optimum for the

faster generation of results.

References

[1] http://www.cse.unsw.edu.au/~cs9244/06/seminars/02-
nfd.pdf

[2] Understanding EPIC Architectures and Implementations
by: Mark Smotherman, Dept. of Computer Science,
Clemson University

[3] http://www.hpl.hp.com/techreports/1999/HPL-1999-
111.pdf

[4] http://cse.yeditepe.edu.tr/~gkucuk/courses/cse533/vliw-
epic.pdf

[5] EPIC: An Architecture for Instruction-Level Parallel

Processors by Michael S. Schlansker, B. Ramakrishna Rau,

Compiler and Architecture Research, HP Laboratories Palo

Alto

Acknowledgements

Special thanks to Dr. Rajeev Kumar Singh, Assistant Professor,

Department of Computer Science and Engineering, Shiv Nadar

University.

Author Profile

Pranjal Mathur is a current student of esteemed Shiv Nadar

University, pursuing his undergraduate studies in Computer Science

and Engineering. He is an active member of IEEE Student Chapter,

Shiv Nadar University. Awarded by HRD Ministry of India for

exceptional academic achievements, he holds certification of Merit for

AISSE 2014 Examinations. He has worked for various organizations

including Indian Railways, Geeksforgeeks, and various startups and

has an active record of research publications in the field of Computer

Science and Education.

http://www.cse.unsw.edu.au/~cs9244/06/seminars/02-nfd.pdf
http://www.cse.unsw.edu.au/~cs9244/06/seminars/02-nfd.pdf
http://www.hpl.hp.com/techreports/1999/HPL-1999-111.pdf
http://www.hpl.hp.com/techreports/1999/HPL-1999-111.pdf
http://cse.yeditepe.edu.tr/~gkucuk/courses/cse533/vliw-epic.pdf
http://cse.yeditepe.edu.tr/~gkucuk/courses/cse533/vliw-epic.pdf

