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ABSTRACT

Reliability is one of the most vital elements in Information industry. An understanding of failure process is central to any effort to
model development and availability is closely related to reliability and can be calculated from reliability. Reliability measurements such as
Transition Probability, Mean time to system failure, Availability and Busy period of repairman in repairing the failed units can be used to guide
managerial and engineering decisions on various projects. This basic model represents a system having one main unit along with its sub unit and
two of its associate units. Functioning of main unit is essential for the functioning of the system. Associate units depend on the main unit and sub
unit. The system fails as soon as the main unit fails. There is a single repairman who is always available and repairs the failed unit. After a
random period of time, the whole system goes for preventive maintenance. In this paper the failure and repair time distributions are taken to be
exponential. Using Markov regenerative process, several system characteristics using chapman-kolmogorov equations are evaluated and profit
analysis is done. This kind of analysis is of immense help to the owners of small scale industry. Also the involvement of preventive
maintenance in the model increases the reliability of the functioning units.

Keywords: Regenerative Point, MTSF, Availability, Busy Period
Academic Discipline: mMathematics
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1. Introduction: Inthe past, Arora et-al[2] has done reliability analysis of two unit standby redundant system with constrained repair time.
Gupta et-al [6] has worked on a compound redundant system involving human failure. Rander et-al [2] has evaluated the cost analysis of two
dissimilar cold standby systems with preventive maintenance and replacement of standby units. A pioneer work in this field was done by
Gopalan [1] and Osaki [3] by performing analysis of warm standby system and parallel system with bivariate exponential life respectively.
Earlier Pathak et al [7&8] studied reliability parameters of a main unit with its supporting units and also compared the results with two different
distributions. This particular system consists of four units namely one main unit M, one sub unit A and two associate units B & C. Here the
associate units B and C dependents upon main units M and sub unit A . The system is operable when the main unit, sub unit and at least one
associate unit is in operation. Main unit and sub units can also function with either of B or C. As soon as a job arrives, all the units work with
load. It is assumed that only one job is taken for processing at a time. There is a single repairman who repairs the failed units on priority basis.
Using regenerative point technique several system characteristics such as transition probabilities, mean sojourn times, availability and busy
period of the repairman are evaluated. In the end the expected profit is also calculated.

3. Assumptions used in the model:

a. The system consists of one main unit, one sub unit and two associate units.

b. The associate unit A and B works with the help of main unit and sub unit.

¢. There is a single repairman which repairs the failed units on priority basis.

d. After random period of time the whole system goes to preventive maintenance.
e. All units work as new after repair.

f. The failure rates of all the units are taken to be exponential whereas the repair time distributions are arbitrary.
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g. Switching devices are perfect and instantaneous.

4. Symbols and Notations:
p,, = Transition probabilities from S, to S
4, = Mean sojourn time at time t

E , =State of the system at epoch t=0

E=set of regenerative states S, - S,

a,; (t) = Probability density function of transition time from S to S ;

Q,; (t) = Cumulative distribution function of transition time from S, to S,
7, (t) = Cdf of time to system failure when starting fromstate E ; = S, € E
4, (t) = Mean Sojourn time in the state E, = S, € E

B, (t) = Repairman is busy in the repair attimet/E = S, € E

r. /v, [r, [r, =repair rate of Main unit M /Sub Unit A/ Unit B/ Unit C

a | B 1y l5 =Failure rate of Main unit M /Sub Unit A / Unit B/ Unit C

9,/9,/9,/9, =Probability density function of repair time of Main unit M /Sub Unit A/ Unit B/ Unit C

G,/G, /G, /G, =Cumulative distribution function of repair time of Main unit M /Sub Unit A / Unit B/ Unit C

a(t) = Probability density function of preventive maintenance .

b(t) = Probability density function of preventive maintenance completion time.

A (t) = Cumulative distribution functions of preventive maintenance.

B (t) = Cumulative distribution functions of preventive maintenance completion time.

= Symbol for Laplace -stieltjes transforms.

C |= Symbol for Laplace-convolution.

5. Symbols used for states of the system:

M, /M /M --Mainunit ‘M* under operation/good and non-operative mode/ repair mode
A, I A [ A --Subunit ‘A’ under operation/good and non-operative mode/ repair mode
B, /B, /B -- Associate Unit ‘B’ under operation/repair/ good and non-operative mode

C,/C, IC - Associate Unit ‘C’ under operation/repair/good and non-operative mode
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P.M. --  System under preventive maintenance.

Up states:s, = (M ,,A,,B,.C,):S,=(M_,,A,,B,,.C,)S,=(M,, A, ,B,,C,)
Down States: s, = (M ,,A,,B_,C,):S,=(M_,A B ,C %S =(SD)S,=(PM)

6. Transition Probabilities:

Simple probabilistic considerations yield the following non-zero transition probabilities:

L Qu=[ae ™ A 2.Q, (1) = [pe 7 At

0

t

t
3. QO3 (t) _ J‘y e*(a+/f+y+¢>‘)tA(t)dt 4. Q04 (t) _ J‘5 ef(a+ﬂ+7+§)tA(t)dt
0

0

t t

5.Q (1) = ja(t)e’(“”’*“"‘"dt 6.Q, (t) = j g, (t)dt
7.Qy (1) = [ g, (1)t 8.Qy (1) = [e g (t)dt
9. Qu () = [(a+ f+ s)e NG (tydt 10.Q, (1) = [e " "g (Oat

t t

11.Q, (1) = [(a + B + y)e G (bt 12.Q, (1) = [ g, (D)

0

t

13.Q,, (1) = Ib(t)dt

Wherex, = a + S +y +06 , Nowletting t - oo , weget Lim Q; (t) = P,
t— oo

14, p, = [ae ™A@ = —[1-a"(x,)]
0 xl

15. p, = [pe 77 A(t)dt = ﬁ[l— a” (x)],
0 xl

16. py, = [re " " A(tydt = [1-a (x)] ,
X

0 1

—(a+f+y+6)t o o *
17. p, = [se 77 At)dt = —[1-a (x,)],

0 Xl

V.K. Pathak® IJECS Volume 5 Issue 7 July 2016 Page No.17243-17255 Page 17245



DOI: 10.18535/ijecs/v5i7.12

18. pg = [a(tye Mt =a'(x,) 19. p, = [g. ()t =1,
20. p,, = [9,(0dt =1 : 21 py ()= [e g ()dt = g, (@ + B+ 5),
22, py = [(a+p+8)e "G, (dt =1-g, (@ + f+5)

23. p,(0)=[e g ()t =g, (a+B+7),

©

28. p, = [(a+ p+y)e 76, (M)At =1- g, (a + f+7),

0

25. p,, (1) = jb(t)dt =1 ,26. p,, :Jgs(t)dt =1,

21. Py = Py = Py = Py =1 [6.1-6.27]

It is easy to see that
P ¥ Py + Pgg+ Poy + Pos =1 4 Py + Py =1 ) Py + Py =1 [628-630]

And mean sojourn time are given by

31 u, = i[l—a*(xl)], 32. ylzjc;_l(t)dt ,
X1 o

33. u, = IG_Z(t)dt , 34. u, = ;[1— 9, (@ + B +5)] ,
. a+ pf+0

35. u, = — 1 - 9, (@+p+7), 36. u, = jg(t)dt ,
a+ p+y 5

37. u, = J'G_S(t)dt

[6.31-6.37]
We note that the Laplace-stieltjes transform  of Q; (1) is equal to Laplace transform  of a; (t) ie.
Q,(s) = [e “Q, (dt = L{Q, (V} = a, (5) [6.38]

[L-a (s+x)],

S+ X,

39. (501(5) = ja e CTVNA(t)dt =
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A(t)dt =

—(s+x)t

[L-a (s+x,)],

S+ X,

40.Q, (s) = [fe

41. Q,, (s) = jye"“‘”‘A(t)dt -

[L-a (s+x)],

S+ X,

42. Q,, (s) = jée"“*”‘A(t)dt -

[L-a (s+x)],

S+ X,

o

43. 605 (s) = J‘e_(ﬂxl)la(t)dt = a*(s + X)),

0

44.Q,(s) = [e “g,()dt = 9, (5) ,

©

45.Q,,(s) = [e g, (ndt = g, (),

46. (530 (s) = '[e’(““ﬁ”y)tgs(t)dt = g;(s ta+ B +6),

—(s+a+f+8)t ~ (a + ﬁ + 5)
G,(t)dt = —————

[1—93*(s+a+ﬂ+5)] ,
S+a+ B +0

47.636(5):j(a LB +5)e

©

48. Q, (s) = fe g (bt = 9, (s+a+f+7),

0

©

49. Q,, (s) = [(a+p+ y)e G (t)dt =

0

(a+B+7y)

-9, (s+a+pB+y),
S+a+pf+y

w©

50. Q (s) = [ e byt =b (s),

51. Q,, (s) = [e o, (adt = g, (s)

[6.39-6.51]
We define m; as follows:-
d - /
mij:_[_Qij(s)]5=0 :_Qij (O) [652]
ds
Itcantoshowthatmy + Mg, + Mgy + My + My = 4 My + Mg = fgiMy + My = 41,
Where a + B+ 7 + 6 = X, [6.53-6.55]

7. Mean time to System failure-
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Time to system failure can be regarded as the first passage time to the failed state. To obtain it we regard the down state as absorbing.
Using the argument as for the regenerative process, we obtain the following recursive relations.

(1) = Qe () +Qp () + Qe (1) | s | 7, (1) + Qg (1) [ S] 7,(t)+ Q4 (1)

(1) = Qg (1) | s | 7o(t) +Qy (1)

7, (1) =Q, (1) LS| 7(t)+Q,(t) [7.1-7.3]

Taking Laplace -stieltjes transform of above equations and writing in matrix form.

We get

[any
|
O
|
O

R

—
=
N

|r 1
-0 |
lt—ci,o o 1 JL%J

D,(s) = |- 630 1 0 =1- 630603 - 604640 [74]

Now letting s — 0 we get

[7.5]
D,(0)=1- Pos Py = Pos Py [76]

The mean time to system failure when the system starts from the state S is given by

D, (0) - N, (0)
D, (0)

MTSF=€e (1) = —[dd—;?o ()., = [7.7]
S

To obtain the numerator of the above equation, we collect the coefficients of relevant of m , in D1/ (0)- N 1/ (0).

Coeff. Of (M, =m, =m, =m, =m,)=1

Coeff .of (M,, = m,, ) = p,,

Coeff .of (m,, = m, ) =p,, [7.8-7.10]

From equation [7.7]

/

D, (0) - N, (0)

MTSF=E (T) - 17, (s)]._, -
ds .0
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=,uo+/13|003+,u4p04
1- Pos Pao = Pos Py

[7.11]
8. Availability Analysis:

Let M, (t)(i = 0,3,4) denote the probability that system is initially in regenerative state S; € E is up at time t without passing
through any other regenerative state or returning to itself through one or more non regenerative states .i.e. either it continues to remain in
regenerative S, or a non regenerative state including itself . By probabilistic arguments, we have the following recursive relations
M o(t) _ e*(a+ﬁ+y+a‘)l;(t)’ M 3(t) _ ef(a+ﬁ+5)tG_3(t)’ M 4(t) _ ef(a+ﬁ+y)tG_4(t)’

[8.1-8.3]

Recursive relations giving point wise availability A, (t) given as follows:

Ay() =M () + > a,(t) | c| Al(l) s AW =a,1) | cf A();
A, () =ay, (1) [ Al(t) A M =M M)+ Y A, | e AW
A =M, )+ > a,(@) | c| A1) s A =0, (1) | c| A(D);

Ag(t) =g () [ ] Ay(t)

[8.4-8.10]
Taking Laplace stieltjes transformation of above equations; and writing in matrix form, we get
a4, GIA AL AL AL AL AL AT =M, ,0,0,M,,M,,0,0] [8.11]
|F 1 -0qy -G, -0y Gy 0Oy O 7|
|-q, 1 0 0 0 0 0o |
I -q, O 1 0 0 0 0 I
Where q7x7:i_q30* 0 0 1 0 0 qse*l
: ~q, O 0 0 1 0 -q, I
l-q, O 0 0 0 10 |
|L— q, O 0 0 0 0 1 Jm
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1 -q, -9, -9, -9, -9, O

e 1 0 0 0 0 0

a0 1 0 0 0
Therefore D, (s) = |- q,, 0 0 1 0 0 —
~q, 0 0 0 1 0 -q,

—q, 0 0 0 0 1 0

—q, O 0 0 0 0 1

:1_q01 O —00 920 — Y0 Y930 ~ 90 Y ~Uos U5 ~ Y5 Y6 Yeo ~ Gos Gus Yeo

If s - 0 weget D,(0) = 0 whichis true [8.12]
Mo* _q01* _qoz* _q03* _qoa* _qos* 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
NowN,(s) =M 0 0 1 0 0 Uy
M, 0 0 0 1 0 A,
0 0 0 0 0 1 0
0 0 0 0 0 0 1
Solving this Determinant, we get
N,(s)=M, +M,q, +M,q, [8.13]
If s > 0 we get
NZ(O):luO+lu3p03+1u4p04 [814]
To find the value of DZI(O) we collect the coefficient m., in D, (s) we get
Coeff.of (m, =m, =m,=m, =m_)=1=1L,
Coeff. of (m,)=p, =1L, Coeff. of (m, )= p, =L,
Coeff.of (m,, =m, )= p, =L, Coefff (m,, =m,)=1p, =1L,
Coeff.of m, = p, =L, Coeff.of m, = p,p, + Py P, = L,

[8.15-8.21]

Thus the solution for the steady-state availability is given by
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N, (0) :ﬂoLo+ﬂ3L3+ﬂ4L4
I
D2 (O) ZluiLi

i=0,1,2,3,4,5,6

A, () = Lim A, (t) = Lim sA, (s) = [8.22]

9. BUSY PERIOD ANALYSIS:

(a) Let W, (t) (i =1,2,3,4) denote the probability that the repairman is busy initially with repair in regenerative state S, and remain busy at
epoch t without transiting to any other state or returning to itself through one or more regenerative states.

By probabilistic arguments we have

W, (1) = G, (t) W, (1) = G, (1), W, (t) = G, (t) W, (t) =G,(t)

[9.1-9.4]
Developing similar recursive relations as in availability, we have
Bo(t) = > a,(t)[ ¢ | B(t) ; B,() =W, (t)+a, (1) | c| By(t)
B,() =W, (t)+a,(t) | c|By(t) ; B,() =W () + > a,(t) | c| B(t);
B,()=W,(t)+ > a,(t) Lc] B(t) By (1) = ag (1) [ C[B, (1) ;

i=0,6

Be(t) = ag (1) | € [ By ()

[9.5-9.11]
Taking Laplace stieltjes transformation of above equations; and writing in matrix form, we get
d,.,[B, .B, .B, B, ,B, B, B, 1 =[0W, W, W, ,w,6,0,0] [9.12]
Where 4, ,, is denoted by [8.11] and therefore D 2/ (s) is obtained as in the expression of availability.
0 — Uy — 0y — g — 0y — g5 0
w1 0 0 0 0 0
w, 0 1 0 0 0 0
Now N, (s) = X N
w, 0 0 1 0 0 Uy
w,” 0 0 0 1 0 a0,
0 0 0 0 0 1 0
0 0 0 0 0 0 1
Solving this Determinant, In the long run, we get the value of this determinant after putting s — 0 is
N3(0)=(u1p01+u2poz+,L13p03+,u4p04) =/11L1+,L12L2+,L13L3+,u4 .= Z:uiLi [913]

i=1,2,3,4

Thus the fraction of time for which the repairman is busy with repair of the failed unit is given by:
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N, (0) 2 b
B, (»)=Lim B, (t)=Lim B, (s)=———=-—""2 [9.14]
(5o 550 D, (0) z L
i=0,1,2,3,4,5,6
(b)Busy period of the Repairman in preventive maintenance in time (0, t], By probabilistic arguments we have
W (1) = B (t) [9.15]
Similarly developing similar recursive relations as in 9(a), we have
Bo(t) = > a,(t) [ €] B,(t) ; B,(t) =0, (t) [ c|B,(t) ;
i=1,2,3,4,5
B,(t) =a, (1) | ] B,(t) ; By(1) = > a4, (t) | c| B(t) ,
i=0,6
B,(t)= > a,(t) | c| B(1) ; By (t) =W (t)+a,(t) [ C]B,(1) ;
i=0,6
Bo(t) =0qq (1) [ €| By(t)
[9.16-9.22]
Taking Laplace stieltjes transformation of above equations; and writing in matrix form, we get
q,.,[B,.B, ,B,.B,,B, B, ,B, 1 =[0,0,00,0wW,,0]
Where @, ,, is denoted by [8.11] and therefore D 2/ (s) is obtained as in the expression of availability.
0 — Uy — U — U — Uy — g 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
NOWN , (s) = 0 0 0 1 0 0 RE
0 0 0 0 1 0 U
w,” 0 0 0 0 1 0
0 0 0 0 0 0 1
Solving this Determinant, In the long run, we get the value of this determinant after putting s — 0 is
N,(0) = pgpy = sl
[9.23]
Thus the fraction of time for which the system is under preventive maintenance is given by:
* * * N 0 L
B,” (w)=Lim B,” (t)=Lim sB,* (s) = “/( T [9.24]
o o0 D, (0) X ul
i=0,1,2,3,4,5,6

(c)Busy period of the Repairman in Shut Down repair in time (0, t], By probabilistic arguments we have

W, (1) = G, (1) [9.25]
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Similarly developing similar recursive relations as in 9(b), we have

B, (1) = . > 0, () [ e Bi(t) ; B, (t) =0, (t) L&] B,(t) ;
B, (1) =a, () [ c| By(t) ; B,(t) = Z q, (1) [ c| B(1) ;
B,(1) = :Z q,(t) Lc] B;(1) ; B, () = ag (1) L€ B,(1) ;
B (1) =W, (t) +a (1) | €| By(t) [9.26-9.32]

Taking Laplace stieltjes transformation of above equations; and writing in matrix form, we get

*

.. e .
q,,,8, .8, .8, ,B, B, B, ,B, 1 =[0,0,00,00W, ]

Where @, is denoted by [8.11] and therefore D 2/ (s) is obtained as in the expression of availability.

* * * * *

— Uy — U — U ~ Oy ~Ugs 0
0

Now N, (s) =

— U4

o O O OO O

*

W

6

0 0
0 0
0 0 ~ 0y
1 0
0 1
0 0

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
In the long run, we get the value of this determinant after putting s — 0 is

Ns(o) = ye(pos Py + Py p46) = lueLe

[9.33]
Thus the fraction of time for which the system is under shut down is given by:
* * * N (0 L
B,” () =1Lim B,” (t) = Lim sB,’ (s) = 5,( ) = o [9.34]
t—o 50 D2 (0) Z /uiLi
i=0,1,2,3,4,5,6
10. Particular cases: When all repair time distributions are n-phase Erlangian distributions i.e.
_ _ nro(nrt)" e ™ _ e "nrt)le ™
Density function g, (t) = And Survival functionG | (t) = Z _
n-1 — j!
j=0
[10.1-10.2]
And other distributions are negative exponential
a(t)=0e ™ b(t)=ne™ At)=e* B(t)=e™" [10.3-10.6]

rnt

Forn=1 g, (t)=re "

rnt

, G (t)y=e """ Ifi=1,2,3,4

9,(t)=re ™, g,(M)=re™ g, (t)=re "9, (0)=re ™ g (t)=re "
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G,()=e " G,()=e " G, ()=, G,()=e " G (t)=e ™ [10.7-10.16]
Also
a p 14 o o
p = s = y = s = , =
” X, + 0 ” ,+ 0 ” X, +0 " ,+ 0 ® X, + 0
r, a+ pB+9
P =1 Py =1 Py ' =
a+p+0+r, a+ f+0+r,
r, a+ p+y 1 1
Py = = ' = v My =
a+p+y+r, a+ p+y+r, X, + 0 r,
1 r, r, 1 1
Hy=" \Hyg=""" " H,= " Hg =", Hg="
r, a+pB+0+r, a+p+y+r, n r,
[10.17-10.34]
z aiL
MTSE= 2ot #3Pos * H4 P A () = Holog+ p,ly+p,L, ’Bol*(oo) _ iz
1- Pos Pao = Poy Py Z IuiLi z 'uiLi
i=0,1,2,3,4,5,6 i=0,1,2,3,4,5,6
* L * L
B," () = —2— B () = —tb [10.35-10.39]
2 Ak IR
i=0,1,2,3,4,5,6 i=0,1,2,3,4,5,6

WhereL, =1;L, = pgiLl, = Pgi Ly = Poil, = Pos Ly = Pos i Lg = PPy + Py P
[10.40-10.46]
11. Profit Analysis:-

The profit analysis of the system can be carried out by considering the expected busy period of the repairman in repair of the unit in
0.

Therefore, G(t) = Expected total revenue earned by the system in (0,t] -Expected repair cost of the failed units

-Expected repair cost of the repairman in preventive maintenance -Expected repair cost of the

Repairman in shut down

= Clﬂup (t)_CztUbl(t)_ C3yb2(t)_ C4ﬂb3(t)

=C,A,-C,B'0-C,B°% -C,B" [11.1]

t t t t

Where s (t) = IAo(t)dt s, (1) = j B, (t)dt ; u,,(t) = J‘Boz(t)dt Duy, (1) = J‘Boa(t)dt

[11.2-11.5]

C, is the revenue per unit time and C,,C,,C, are the cost per unit time for which the system is under simple repair, preventive

maintenance and shut down repair respectively.
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Figure: state transition diagram
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