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Abstract. This paper presents a combination of a nonlinear PD controller and Nelder-Mead algorithm to design an optimal controller for a 

nonlinear overhead crane system. The nonlinear PD controller is derived based on the passivity of the system and Nelder-Mead algorithm is 

exploited to find optimal parameters for the controller. The system dynamic model is derived by using Lagrangian equation. Simulations are 

conducted within Matlab environment to determine the optimal control parameters and to verify the performance of the controller. The 

simulations demonstrates that the controller is effective to move the trolley as fast as possible to the desired position while the oscillation of the 

payload is suppressed at the end of the operation. The robustness of the controller against uncertainties in cable length and payload is also 

indicated by the simulations.   
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1. Introduction 

Overhead cranes are widely used in a large number of fields, 

such as heavy industries, seaports, automotive factories, and 

construction facilities. The productivity and efficiency of an 

overhead crane depend not only on payload weight and 

velocity but also on the capability of the crane to reduce the 

swing angle of the payload quickly at the end of each 

operation. Theory and practice have shown that faster 

acceleration and deceleration correspond to larger swing 

angles. This condition leads to a dangerous situation and may 

cause severe accidents if the cargo swing angle becomes too 

large. A large cargo swing angle could break the crane, 

damage other equipment and infrastructures, or even hurt 

people nearby.  

The task of control the trolley and suppression the swing 

angle has attracted the interest of numerous researchers. A 

number of control algorithms have been developed for 

overhead cranes. One commonly used approach is the linear 

and gain scheduling methodology. This method linearizes the 

complex nonlinear crane model around the target position 

14. To increase performance, several authors exploited the 

nonlinearity of the system in designing the controller and 

investigated nonlinear, advanced, and intelligent control 

strategies. Several controllers have been investigated such as 

partial linearization 15;17;18, sliding mode 1;10, adaptive 

controller 2;12, energy-based controllers and gain 

scheduling 14; 5; 3. 

 

In recent years, researchers have examined a design method 

based on the energy and passivity of the system. This 

approach was successfully applied in the control of 

underactuated systems, such as overhead cranes 4;16, ball-

and-beam systems 11 and underactuated manipulators 6. 

The main advantage of these methods is the simplicity in 

deriving the controller from the energy storage function, 

which adopts the mechanical energy of the system as well as 

the “artificial” kinetic and potential energy. The artificial 

energy affects control performance. In the traditional 

approach of energy-based methods, authors directly use the 

mechanical energy of the system or its quadratic form in the 

Lyapunov functions to derive proper control laws 4. Hence, 

the obtained control laws include system parameter-related 

terms. Another limitation of traditional energy-based control 

methods is that they only exploit the passivity of the control 

input with actuated velocity and completely exclude the 

passive payload swing. 16 aimed to derive a controller that 

includes the passivity of the payload swing by utilizing the 

payload as an end effector of a manipulator. However, how to 

choose the controller parameters is not considered in the 

study. In the current paper, by introducing a performance 

index the optimal parameters of the controller then are tuned 

with Nelder Mead algorithm.   

The remainder of this paper is organized as follows. Section 2 

introduces the nonlinear dynamics of an overhead crane with 

two degrees of freedom as well as several useful properties of 

a dynamic system. In Sections 3, the nonlinear PD controller 

is given based on passive property of the system and the 

controller parameters is tuned by using Nelder-Mead 
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algorithm. Section 4 presents the numerical verifications of 

the controller. Finally, Section 5 concludes. 

2. Dynamic model of a 2-D overhead crane 

2.1 Dynamic model 

The control problem of a crane during the horizontal 

transportation phase is addressed in this paper. The rope has 

constant length, and the system has two degrees of freedom.  

 
To obtain the dynamic model of the system, the following 

assumptions are established: i) the payload is considered as a 

point mass; ii) the mass and stiffness of the hoisting rope are 

neglected; iii) the effects of wind disturbances are not 

considered. Based on the Lagrangian formulation (Spong, 

Hutchinson, & Vidyasagar, 2005), the dynamic model of a 2-

D overhead crane system is represented by the following: 

  ( ) ( , ) ( ) uM q q C q q q g q B+ + =&& &&        (1) 

where [ , ]Tx q=q  denotes the system state vector with ( )x t  

as the trolley displacement and ( )tq  as the payload swing 

angle (Fig. 1), and u  is the force acting on the trolley. The 

variables ( ), ( , ),&M q C q q  ( )g q , and B  represent the inertia 

matrix, centripetal-Coriolis matrix, and  gravitational forces 

which are derived from kinetic and potential energy, and the 

input control matrix, respectively. These variables are 

explicitly defined as follows: 
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In this equation of motion, 
t

m  and 
p

m  represent the trolley 

mass and the payload mass, respectively, l  denotes the length 

of the rope. Equation (1) can be rewritten as follows: 

  
2( ) cos sin ,

t p p p
m m x m l m l uqq q q+ + + =&& &&&  (2) 

  
2cos sin 0.

p p p
m l x m l m glq q q+ + =&&&&  (3) 

Equation (1) has several important properties: (i) the inertia 

matrix is positive definite and symmetric, 0T= >M M ; (ii) 

the matrix ( 2 )= -&N M C  is skew-symmetric, 

( 2 ) 0T - =&s M C s
 
for 2" Î Âs .  

2.2 Passivity of the open-loop system  

Given the storage energy function E  comprising the kinetic 

and potential energy of the system, we obtain the following:  

 1

2
( , ) ( ) ( ) 0TE Pq q q M q q q= + ³& & & , (4)  

with ( ) (1 cos ) 0.
p

P m gl q= - ³q   

The derivative of the storage function with regard to time is 

calculated as follows: 

 1

2
( ) ( ) ( ).T T TE = + +& && && & & &q M q q q M q q q g q  (5) 

Substituting the term ( )M q q&& from Equation (1) and using the 

skew-symmetric property of 1

2
( ) ( , )-& &M q C q q , we obtain the 

following: 

 .E ux=& & (6) 

The term ux& denotes the power supplied by the actuator for 

the trolley. The inequality in Equation (6) shows that the 

system is passive. Integrating both sides from zero to t , we 

obtain the following:   

 
0 0

( ) (0) ( ) ( )
t t

E t E Eds u x dt t t- = =ò ò& &  

or  

 
0

( ) (0) ( ) ( )
t

E t E u x dt t t- = ò & . (7) 

When the forces 0u =  and 1

2
| |q p< for the zero input, the 

system has a stable equilibrium ( , , , ) (*, 0, 0, 0)x xq q =&& , where 

the total energy is minimized after taking the zero values.  

3. Energy-based controller design 

The control objective is to bring the trolley from an initial 

condition to a desired position and for the payload swing 

angles to vanish completely at the load destination. This 

objective indicates that the state variables [ ,   ]Tx q=q  should 

reach their desired values [ ,   0]T
d d

xq =  after a short time. 

3.1 Controller design directly from system energy 

In this section, the controller is derived by considering the 

energy storage function: 

 
2 21 1

2 2

1
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E p d
V k E kx k x x

p
= + + -q q& & ,  (8) 

with 1 or 2,p =  and , 0, 0.
E P

k k k> ³  

The last two terms in Equation (8) are called the “artificial” 

kinetic and potential energy related to actuated coordinates. 

The derivative of V  with regard to time under equation (6) is 

as follows:   
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Taking x&& from Equation (2) 
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and substituting into Equation (9), we obtain the following: 
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 Fig. 1 The crane model 
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( )1 1
[ ( )] ( , , ) ( ) .

E p d
V x k E kg u kf x k x xq q q= + + + -& && &  (10) 

The controller is chosen as 
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and Equation (10) becomes 

 
2 0

d
V k x= - £& & .   (12) 

As ( , ), ( )E &q q M q  and 
d

x  are bounded, q  and &q  are also 

bounded. Thus, &&q  from Equation (1) and 

11
2( )

d E
V k k f xx= - +&& &&& are bounded. Consequently, ( , )V&& &q q  

is uniformly continuous. According to Barbalat’s lemma, 

lim ( , ) 0
t

V
® ¥

=& &q q ; thus, lim ( ) 0
t

x t
® ¥

=& . Based on the passivity 

properties of the system and Equations (8), (11) and (12), 

lim ( , ),
t

E
® ¥

&q q  lim ( , ),
t

V
® ¥

&q q  lim( )
dt

x x
® ¥

- , and lim
t

u
® ¥

 are 

constant. Thereafter, these constants need to be proven as zero 

by contradiction. Assume that [ , ] [ , 0]
d

x xq ¹ ; that is, assume 

that these variables have other constant values from the 

equilibrium. From the control law in Equation (11), we obtain 

0
o

u u= ¹ ; that is, the input takes a constant value that leads 

to a contradiction because constant forces produce changes in 

x  and q . According to Equation (11), system dynamics will 

change until the minimum storage function in Equation (8) is 

achieved. At this position, [ , , , ] [ , 0, 0, 0]
d

x x xq q =&& , the system 

stabilizes at the desired position. 

In the simplest case with 1, 1, 0
E

p k k= = =  the nonlinear 

controller in Equation (11) becomes the following:  

 ( ) .
p d d

u k x x k x= - - - & (13)  

The control law in Equation (13) is a proportional-derivative 

(PD) controller that can be modified into a nonlinear PD 

controller by adding a coupling part 8: 

 
2( ) ( ) , 0.

p d d
u k x x k k x k

q q
q= - - - + ³& &
& &  (14) 

The controller (11) is derived based on the passivity of the 

input u  with respect to the output x&. The obtained controller 

in special case becomes the PD controller (13).   

3.2 Control design based on passivity of input with 

respect to the combination of x& and q& 

An other alternative by presented in 16, in which the authors 

try to find a new energy storage function such that the system 

is passive with respect to both actuated and unactuated 

coordinates  

 
1

[ ( ) ]E u x g q q¢= +& && . 

So we need find an additional engery storage function 
a

E  that 

satisfy 

 
1 a
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a

E ug q q¢=& & (15) 

where the function E  is defined in (4).  

Solving for u  from Eq. (2) and (3) ones obtains   
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Putting (16) into Eq. (15) one yields 
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Assuming that | | / 2q p< , so cos 0q > , Eq. (17) suggests 

us to choose ( ) cosg lq l q¢ = - , then we have  
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and the additional energy function is given as  

  

2 2 21

2
( sin )

( ) (1 cos )

a t p

t p

E m m l

m m gl

l q q

l q

= +

+ + -

&
. (19) 

In order to guarantee 0
a

E ³ , we choose the parameter 

0l > . So from Eq. (4) and Eq. (19) we have a new energy 

storage function as 
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and its derivative as 

 
1

( cos ) [ sin ]d

x x dt
E u x l u x ll qq l q= - = -& && . (21) 

In order to derive a controller based on new energy storage 

function, the generalized error of the payload is defined as the 

following 

 sin sin
p d

e x x l e ll q l q= - - = - ,  

 cos cos
p

e x l e ll q q l q q= - = -& && & & . (22) 

This definition guarantees that if  

 0, 0
p

e q® ®  then or
d p d

x x x x® ® ;   

 0, 0
p

e q® ®&&  then 0e ®& . 

The control law is deriven by choosing a Lyapunov function 

as 

 
21

1 2 p p
V E k e= +  (23) 

The derivative of V  w.r.t. time under consideration of Eq. 

(21) is  
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This derivative V& suggest us to choose control law as 

 
( sin ) ( cos ),

p p d p

p d d

u k e k e

k x x l k e ll q l qq

= - -

= - - - - -

&

&&
 (24) 

with 0
d

k > , so we obtain 

 
2 2( cos ) 0

d p d
V k e k x ll q q= - = - - £& && & . (25) 

The detail of stability analysis can be found in ref. [Sun N., & 

Fang, Y. (2012)]. 
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3.3 Parameter tunning by Nelder-Mead algorithm 

It is clear that, when we apply the controllers (11) or (24) the 

response of the system depends on the chosen parameters 

such as , , ,
E p d

k k k k  or , ,
p d

k k l , respectively. In order to find 

reasonable parameters for the controller (24) a performance 

index is defined as a quantitative measure to depict the system 

performance. Using this technique an ‘optimum system’ can 

often be designed and a set of nonlinear PD parameters in the 

system can be adjusted to meet the required specification. For 

the proposed control structure, an integral squared error can 

be used as the performance index of the system. It is defined 

as follows: 

    2 2 2 2

1 2 3 4
0

( , , ) [ ] ,
f

t

p d x x
J f k k e e dtl d d d q d q= = + + +ò && (26) 

where ( )
x d

e x x= - and ( )
x d

e x x= -& & &  are tracking errors of 

the trolley position, and 
1 2 3 4
, , ,d d d d  are weighting factors. In 

this paper, the Nelder-Mead iterative algorithm 13;7 is 

exploited to find the optimum parameters , ,
p d

k k l  of the 

controller (24).  

The Nelder-Mead simplex algorithm is the most widely used 

direct search method for solving the optimization problem 

 min ( ),f x   in our case [ , , ]T
p d

k kx l= , (27) 

where : R Rnf ®  is called the objective function and n  the 

dimension. A simplex is a geometric figure in n  dimensions 

that is the convex hull of 1n +  vertices. We denote a simplex 

with vertices 
1 2 1
, ,  ... ,

n +
x x x  by D . 

The Nelder-Mead method iteratively generates a sequence of 

simplices to approximate an optimal point of (27). At each 

iteration, the vertices { }, 1, ..., 1
j

j n= +x  of the simplex are 

ordered according to the objective function values 

  
1 2 1

( ) ( ) ... ( ).
n

f f f
+

£ £ £x x x  (28) 

We refer to 
1

x  as the best vertex, and to 
1n +

x  as the worst 

vertex. The algorithm uses four possible operations: 

reflection, expansion, contraction, and shrink, each being 

associated with a scalar parameter: a  (reflection), b  

(expansion), g  (contraction), and d  (shrink). The values of 

these parameters satisfy a >0, b >1, 0< g <1, and 0 < d  <1. 

In the standard implementation of the Nelder-Mead method 

the parameters are chosen to be 

 { , , , } {1,  2,  1 / 2,  1 / 2}a b g d = . (29) 

Let 
0

x  be the centroid of the n best vertices. Then 

 
0

1

1 n

j
jn =

= åx x . (30) 

We now outline the Nelder-Mead algorithm given in 9: 

1. Sort. Evaluate f at the n+1 vertices of D  and sort the 

vertices so that (28) holds 

 
1 2 1

( ) ( ) ... ( )
n

f f f
+

£ £ £x x x . 

Calculate 
0

x , the center of gravity of all points except 
1n +

x , 

by (30). 

2. Reflection. Compute the reflection point 
r

x  from 

  
0 0 1

( )
r n

a
+

= + -x x x x . 

Evaluate ( )
r r
f f= x . If the reflected point is better than the 

second worst, but not better than the best, i.e.: 

1
( ) ( ) ( )

r n
f f f£ <x x x , then we obtain a new simplex by 

replacing the worst point 
1n +

x  with the reflected point 
r

x , 

and go to step 1. 

3. Expansion. If the reflected point is the best point so far, 

1
( ) ( )

r
f f<x x ,  then compute the expansion point 

e
x  from 

  
0 0

( )
e r

b= + -x x x x , 

and evaluate ( )
e e
f f= x . If the expanded point is better than 

the reflected point, ( ) ( )
e r

f f<x x , then we obtain a new 

simplex by replacing the worst point 
1n +

x  with the expanded 

point 
e

x  , and go to step 1. 

Else obtain a new simplex by replacing the worst point 

1n +
x  with the reflected point 

r
x , and go to step 1. 

Else (i.e. reflected point is not better than second worst) 

continue at step 4. 

4. Outside Contraction. If 
1n r n

f f f
+

£ < , compute the 

outside contraction point 

 
0 0

( )
oc r

g= + -x x x x  

and evaluate ( )
oc oc
f f= x . If 

oc r
f f£ , replace 

1n +
x  with

oc
x ; 

otherwise go to step 6. 

5. Inside Contraction. If 
1r n

f f
+

³ , compute the inside 

contraction point 
ic

x  from 

  
0 0

( )
ic r

g= - -x x x x  

and evaluate ( )
ic ic
f f= x . If 

1ic n
f f

+
< , replace 

1n +
x  with 

ic
x ; otherwise, go to step 6. 

6. Shrink. For 2 1i n£ £ + , define 

  
1 1

( )
i i

d= + -x x x x  

go to step 1. 

 

The initial simplex is important, indeed, a too small initial 

simplex can lead to a local search, consequently the Nelder-

Mead algorithm can get more easily stuck. So this simplex 

should depend on the nature of the problem. 

4. Numerical simulation   

In this paper, numerical simulations are conducted by using 

Matlab software to verify efficiency of the controller design 

approach. The control objective of the overhead crane is to 

move the trolley to its destination while complementing the 

anti-swing of the load. In the simulation, the system 

parameters are set as follows: 
t

m =  2.0 kg, 
p

m   0.85 kg, 

l = 0.7 m, and g = 9.81 m/s2. The fourth-order Runge–Kutta 

method with a time step of 0.01 s is applied.  The target 

position of the trolley is set as 
d

x = 1 m. The controllers in 

Equation (24) is implemented in the simulation. The lower 

and upper boundaries of the controller parameters and the 

weighting factors are set by 
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1 2 3 4

0 , 250, 0 10,

1.

p d
k k l

d d d d

< £ < £

= = = =
 

For initializing the Nelder-Mead algorithm, the starting values 

of [ , , ]T
p d

k kx l= are chosen as [15, 40, 1]. By applying 

Nelder-Mead algorithm the optimal parameters are obtained 

after  40 iterations. The optimal parameters and the value of 

the fitness function are xopt = [10.5102  16.2436    2.9564]
T
 

and J = 1.4868. The fitness values changing with the iterations 

are given in Fig. 2. 

  
Fig.2 The fitness values with respect to iterations   

 

 
Fig.3 System response with mp = 0.85 kg, L = 0.7 m  

 

The simulation results for the displacement of the trolley and 

swing angle of the load are shown in Fig. 3. The simulation 

results show that the desired position of the trolley was 

reached after about 6s. During this time, the swing angle of 

the payload increased from zero at the staring time and 

decreased to zero when the trolley reached its destination. The 

maximum swing angle is about 10°. There is no overshoot in 

trolley motion and residual vibration in payload, that is very 

important in the operation of cranes. 

Moreover, changes in system parameters including payload 

mass or cable length are also considered in the simulation. 

The system responses coresponding to changing in cable 

length and in mass of the payload are given in Figs. 4 and 5, 

respectively. Fig. 4 shows that in three cases the trolley 

reaches the desired position in about 6s. The maximum of 

swing angles corresponding to the case of shortest cable is the 

largest and that corresponding to the case of longest cable is 

smallest. Despite the swing angle is sensitive to the changing 

of cable length, but the trolley reaches the desired position. 

Moreover, the swing angle is suppressed decreasing to zero 

when the trolley gets its desired position (Fig. 4). The 

response of the system to changing of payload is shown in 

Fig. 5. This figure indicates that the controller is robust 

against payload change. 

 
Fig.4 System response by changing length of the cable   

 
Fig.5 System response by changing weight of the payload  

5. Conclusion   

This paper presents a combination of a nonlinear PD 

controller and Nelder-Mead algorithm for underactuated 

overhead cranes. The main issue solved in this paper is to find 

a suitable parameters of controllers for the considered system. 

Nonlinear differential equations of the system including the 

motion of trolley displacement and payload oscillation has 

been derived and used for verification of control algorithm. 

Three parameters of nonlinear PD controller for the system 

are obtained by using Nelder-Mead algorithm. Simulation 

results showed that the controller is effective to move the 

trolley as fast as possible to the desired position, meanwhile 

the oscillation of the payload is suppressed at the end of the 

operation. In addition, the results also showed the robustness 

of the controller against uncertainties in payload and cable 

length. 
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