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Abstract: The control theory and automation technology is widely used in industries. Many control algorithms are based on the 

mathematical models of dynamic systems. Mathematical models and parameter estimation are basics for automatic control. A 

recursive least squares parameter estimation algorithms and Kaczmarz’s projection algorithm is applied based on ARMAX model 

and OE models. The estimated parameters are compared with the true ones. The proposed method has been applied to identify the 

parameters of bioreactor process 
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1. Introduction 

Nowadays the use of batch reactors in the chemical, 

pharmaceutical, food and beverage industries is very common. 

According to some statistics, 50% of all production processes 

in industry are batch type processes. The term batch reactor is 

used for a variety of process operations, such as chemical 

reactions, product mixing, batch distillation, crystallization, 

solid dissolution, and polymerization. In some cases these 

reactors have specific role dependent, such as crystallizer or 

bio reactor.For optimization of cell mass growth and product 

formation continuous mode of operation of bioreactors are 

desirable. One of the major challenges in direct adaptive 

control is the existence of non minimum-phase zeros. 

Difficulties of identification for multivariable controlled 

autoregressive moving average (ARMA) systems are that there 

exists unknown noise terms in the information vector and the 

iterative identification can be used for the system with 

unknown terms in the information vector. By means of the 

hierarchical identification principle, those noise terms in the 

information vector are replaced with the estimated residuals 

and a least squares based iterative algorithm is proposed in [1], 

for multivariable controlled ARMA systems. In [2], 

identification problems of a class of nonlinear systems are 

considered. A stochastic gradient algorithm is developed by 

introducing a switching function and the finite impulse 

response model, the identification model of a nonlinear system 

is obtained In [3], a two-stage recursive least squares (TS-RLS) 

algorithm  is developed for pseudo-linear regressive models by 

combining the auxiliary model identification idea and the 

decomposition technique. The system is decomposed into two 

subsystems with the system model parameters and the noise 

model parameters, , and the parameters  are identified for each 

subsystem. Compared with the auxiliary model based recursive 

generalized extended least squares algorithm, the TS-RLS 

algorithm has less computational burden. The identification 

problem of a class of linear-in-parameters is dealt in [4], for 

output error moving average systems. The difficulty of 

identification is that there exist some unknown variables in the 

information vector. By means of the auxiliary model 

identification idea, an auxiliary model based recursive least 

squares algorithm is developed for identifying the parameters. 

Modeling and parameter identification of multiple-input single 

output Wiener nonlinear systems is identified in [5],in which  a 

multiple-input single output Wiener nonlinear model  is 

identified and  gradient-based iterative algorithm is derived for 

the proposed model. The proposed method has been applied to 

identify the parameters of a glutamate fermentation process. A 

hierarchical least-squares based iterative identification 

algorithm is derived in [6], for multivariable systems with 

moving average noises. A hierarchical identification principle 

and iterative identification principle is combined and a 

multivariable system is decomposed into two subsystems, one 

containing a parameter vector and the other containing a 

parameter matrix. This algorithm performs a hierarchical 

computational process at each iteration. The least-squares 

based iterative algorithm makes full use of all data at each 

iteration by which highly accurate parameterestimates are 

generated. The criterion functions of the recursive parameter 

estimation algorithms are explained in [7], for linear regressive 

models and pseudo-linear regressive models, including the 

equation error models and the output error models. The 

computation of the criterion functions has been implemented 
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by the recursive formulas. An iterative least squares algorithm 

is used to estimate the parameters of output error systems in [8] 

and uses the partitioned matrix inversion lemma to implement 

the proposed algorithm in order to enhance computational 

efficiencies. 

This paper is organized as follows. Section 2 describes the 

mathematical modeling of a reactor followed by state space 

model and operating conditions of a reactor. Section 3 

describes the system identification procedure. Online 

identification of a bioreactor process is developed in section 4 

using RLS algorithm and Kaczmarz’s projection algorithm.  

Section 5 argues the simulation results of both the algorithms 

using Matlab coding technique. Finally some conclusions are 

given in Section 6, followed by references 

 

2. MODEL OF BIOREACTOR 

 
Figure 1 Schematic diagram of a continuous bioreactor  
Table 1: parameters used for modeling of a bioreactor 

The study is based on single biomass-single substrate process. 

The model equations are based on first principle. Given by 

Material Balance: 

Rate of accumulation= inflow-outflow + generation –

consumption.  

The primary aim of a continuous bioreactor is to avoid wash 

out condition which ceases reaction. This may be done either 

by controlling cell mass or substrate concentrations. In order to 

maintain the reaction rate and product quality, both of them 

may be controlled with dilution rate and feed substrate 

concentration as manipulated variables. There are 4  number  

of  control configurations possible which are as follows: 

Dilution rate is used to control cell concentration and 

substrate concentration 

Feed substrate concentration is used to control biomass or 

cell concentration and substrate concentration 

The modeling equations of a bioreactor are given by equations 

1&2   

                                           (1)                                                                                                                                 

                                           

                                                                                 (2) 

                                                                                                                                           

Where the state variables are x1, the biomass concentration and 

x2, the substrate concentration. The manipulated input is D, 

dilution rate and the disturbance input is x2f, substrate feed 

concentration. 

There are 2 possible solutions given by equations 3&4, which 

represents specific growth .They are Monod and substrate 

inhibition 

 

 (3)                                                                                                                            

 
                                                                      (4)            
   2.1 Dynamic behavior of a reactor 

Table 1 shows the parameters to find the steady state 

conditions for the model shown by equations 1&2.The steady 

state dilution rate is D=0.3 hr
-1

and the feed substrate 

concentration is 4.0 g/ litre. 

Table 2 shows the operating conditions for a dilution rate of 

0.3hr
-1

.Steady state condition 1 is a washout case since no 

reaction was occurred.  Substrate concentration is the same as 

feed concentration.  

Table 2: Operating conditions of bioreactor 

S.N

o 

Steady State Biomass 

Concentrati

on 

Substrate 

Concentration 

Stability 

1 Equilibrium 

1 

X1s=0 X2s=4.0 stable 

2 Equilibrium 

2 

X1s=0.995 X2s=1.5122 unstable 

3 Equilibrium 

3 

X1s=1.53 X2s=0.175 stable 

2.2  state space model of a reactor 

 The state space model matrices are  
A= 

 

                                                 
  B= 
 
 
C= 
D=0 

S’represents the derivative of growth rate with respect to 

substrate concentration at steady state and given equation (5). 

s
’
=         =                                                            (5) 

2.3 Stable operating point 

The following initial condition is used for simulation 

X (0) =                 
 
.The state space model  

 

for the corresponding  to stable operating point is  

 

A= 

 

  B= 

 

   C= 

    D=0 

Eigen values are determined for the above matrix and its values 

are -0.3,-2.264hr
-1

, so the system is stable.The transfer function 

relating the dilution rate to the biomass concentration is 

determined using Matlab and is given by equation 6. 

Gp(s) =                                                                         (6) 

 

 

 

The discretized transfer function can be written as                           

Gp (z) = 

                                                                                  (6A) 

3 System identification  
System identification is an approach to obtain a 

mathematical model that reproduces for desired purposes 

and with enough exactitude, the dynamic characteristics 

of the process under study based on the observed 

(measured) variables of the process output signal or 

controlled variable y (t), input signal or control variable u 

(t), and in some cases disturbances v (t). Figure 1 shows 

the block diagram of system identification 
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Figure 2: Block diagram of system identification  

System identification is an integral part of any control design 

and deals with the problem of building reliable mathematical 

models of dynamic processes based on observed input–output 

data. The identification results determine the achieved control 

quality 

3.1 Modelling principles 

Identification of systems can be classified into three main 

groups, white-box, and grey-box and black-box identification 

 1. White-box modelling denotes a modelling technique where 

the model is fully derived based on the physical, chemical or 

biological properties of the system. The main advantage of 

white-box models is that they are not data dependent. 

2. Grey-box modelling represents modelling a system based on 

a priori knowledge of the system.In this some physical 

information is used in the modeling   process together with 

system identification techniques. This type of identification 

often results in models with high accuracy.  

3. Black-box modelling is the alternative modelling technique 

where little a priori knowledge about the system is used in the 

modelling process and all the description of the system is 

strictly empirical and solely based on the collected data. One 

advantage of such methods is that many times the complexity 

of the models is reduced, but physical interpretation of the 

system is not available in the model. 

The ARMAX model structure is 

Y(t)+a1y(t-1)+…….anay(t-na)=b1u(t-1)+……bnau(t-nk-

nb+1)+C1u(t-1)+…..Cncu(t-nc)+e(t)                               (7)        

The difference equation can be written as                  

A(q)y(t)=B(q)u(t-nk)+C(q)e(t)                                      (8)                                                                                                                  

Where y (t) is output at time t 

na-is the number of     Number of poles. 

nb - Number of zeroes plus 1. 

 nc- Number of C coefficients. 

 nk -Number of input samples that occur before the input affects 

the output, also called the dead time in the system. For discrete 

systems with no dead time, there is a minimum 1–sample delay 

because the output depends on the previous input and nk=1 

 y(t-1)…….y(t-na)   - Previous outputs on which the current 

output depends. 

 u(t-1)……u(t-nk-nb+1)  -Previous and delayed inputs onwhich 

the current output depends. 

  e(t) - White-noise disturbance value.  

  The parameters na, nb, and nc are the orders of the ARMAX 

model, and nk is the delay. q is the delay operator. Specifically, 

A(q)=1+a1q-1+…..anaq
-
1na 

B(q)=b1+b2q
-1

+…….bnbq
-n

b
+1

 

C(q)= 1+c1q
-1

+…..cncq
-nc

 

From 6A , A(q)=1-1.768q
-1

+0.7738q
-2

  

B(q)= -0.1327q
-1

+0.1368q
-2

 and C(q) is chosen arbitrarily and 

is given by 

C(q)=1-1.768q
-1

+0.7738q
-2

. 

The recursive estimation functions include RPEM, RPLR, 

RARMAX, RARX, ROE, and RBJ.  RPEM is the general 

Recursive Prediction Error algorithm for arbitrary multiple-

input-single-output models . PRLR is the general Recursive 

Pseudo Linear Regression method for the same family of 

models.  RARX is a more efficient version of RPEM (and 

RPLR) for the ARX-case. ROE, RARMAX and RBJ are more 

efficient versions of RPEM for the OE, ARMAX, and BJ 

cases.To implement these   algorithms the following  

adaptation principle are used. 

i) Kalman filter approach: The true parameters are supposed to 

vary like a random walk with incremental covariance matrix P  

ii) Forgetting factor approach: Old measurements are 

discounted exponentially. The base of the decay is the 

forgetting factor.          

iii)  Gradient method: The update step is taken as a gradient 

step of length gamma.  

iv) Normalized gradient method: The Gradient methods are 

also known as LMS (least mean squares) for the ARX case. 

4. On line model identification 

In many practical cases such as adaptive control, or 

where the system may change from day today, the  model  

parameters  are estimated online. Other motivations for online 

identification are given by including optimal control with 

model following, using matched filters, failure prediction etc. 

Because the identification is online, it must also be reasonably 

automatic. The algorithm must pick a suitable model form 

(number of dead times, order of the difference equation etc.), 

guess initial parameters and then calculate residuals and 

measures of fit. As time passes, number of data points that are 

continually collected will be more and and better models can 

be built. The problem with using the offline identification 

scheme is that the data matrix, X in equation yN = XNθ will 

grow and grow and more input/output rows have to be added to 

it. Eventually this matrix will grow too large to store or 

manipulate in our controller. There are two obvious solutions 

to this problem:  

1. A sliding window can be used where only the last 50 

input/output data pairs can be retained. 

2. A recursive scheme may be used to   achieve   the same 

result but without wasting the old data. 

 4.1 Recursive least-squares 

As more data is collected, the current estimate of the 

model parameters can be updated. At   every sample time, as 

the parameters are updated, estimation   procedure is now no 

longer off-line, but now online. One approach to take 

advantage of the new data pair would be to add another row to 

the X matrix in Equation yN = XN* θ as each new data pair is 

collected. Then a new θ estimate can be obtained using 

Equation 9. 

                                                                                 (9)                                                                                                                      

                                                    N

T

NN

T

N YXXX .)( 1



S.Sundari, IJECS Volume 3 Issue 9 September, 2014 Page No.7974-7978   Page 7977 

 

  With the new augmented X matrix. This equation would be 

solved every sample time. But C matrix grows as each new 

data point is collected and so matrix inversion is required. The 

solution is to use a recursive formula for the estimation of the 

new θk+1 given the previous θk.                                                                                             

4.2 A recursive algorithm for least-squares 
Suppose we have an estimate of the model parameters 

at time t = N, θN, perhaps calculated offline, and we 

subsequently collect a new data pair (uN+1, yN+1). To find the 

new improved parameters, θN+1, yN = XNθ is augmented by 

adding a new row and is given by the equation 10 

    [y,yN-1…YN-n+1: uN+1 uN…………..uN-m+1]                     (10)                                                   

to the old matrix XN.So a new system is obtained  and is given 

by equation 11                                                                                                                                                                                 

(11)  

                                                                                                       

 

 

Or yN+1=XN+1* N+1 

So  N+1 is comuputed  and is given by the equation 12 

   (12)                                                                                                                                                                                    

 

 

                                                                                                                                                                    

 

                       (13) 

Using Matrix inversion lemma the above equation cab be 

written as  

                                       = 

                                                                                                                                                     

      (14) 

 

 

And the equation 13 can be rewritten as  

                                                                                                                                                                                                                                                  

  

 

 

A new parameter vector in terms of the old can be developed 

and is given by equation 15 

 

 

 

                                                                            

     (15) 

 

 

 
By defining the covariance matrix P as                                                                                                      

                                                           (16) 

 

And the parameter updated equation is  

                                                                                                                                                                

(17) 

  

With the gain K in equation and the new covariance given by 

equation   (18). 

 

(18) 

 

 

(19) 
 

 
 
updated equation 17 is nothing but  that the new value of          

is the old value N with an added correction term which is a 

recursive form. The correction term is proportional to the 

observed error.  

4.3 Recursive least-squares estimation Algorithm  

Initialise parameter vector, θ0, (say random values), and set 

co-variance to a large value, P0 = 10
6
I, to reflect the initial 

uncertainty in the trial guesses 

1. At sample N, collect a new input/output data pair (yN+1 

and uN+1) 

2. Form the new N+1vector by inserting uN+1. 

3. Evaluate the new gain matrix KN+1, given in  equation 

18 

4. Update the parameter vector              given in  equation 

17 

5. Update the covariance matrix PN+1, given in equation 

19 which is required for the next iteration. 

6.  Wait out the remainder of one sample time T , 

increment sample counter, N ← N + 1, then go back 

to step 1. 

4.4 Kaczmarz’s projection algorithm  

The standard recursive least squares (RLS) algorithm 

requires two update equations, one to  update gain, and one for 

the covariance matrix. A simplified algorithm can be 

implemented at the expense of the quality of parameter 

estimates. That  method is known as Kaczmarz’s projection 

algorithm, in which the input/output relation is assumed as 

yk=kk                                                       (20)                                                                                                                                                                                                                                                             

 Where θ is the parameter vector and  is the row data vector 

and the correction to the estimated parameter vector is  

                                                                                       (21)                                                                                                                                                                                                                                                                      

Where α is chosen such that    which gives the 

full updating formula given by equation( 22). 

                                                                                        (22)                                                                                                                                                                                                                                            

This update scheme is sometimes modified to avoid 

potential problems when the parameter vector equals zero.Data 

is first generated using Kaczmarz’s algorithm for identification 

in Matlab from an ARX plant, and then the data is processed 

pseudo-online to obtain the estimated parameters. The 

input/output data and parameters from this data are shown in 

Fig 6. The estimated parameters do not converge quickly to the 

true parameters like a full recursive least-squares algorithm. 

  5. Simulation results 
To illustrate some of the schemes mentioned above, an 

ARMAX model for a bioreactor process is chosen and 

some input-output data is generated as shown in figure 3. 
An Output-Error model is built for the plotted data. A 

second order model with one delay is used and a 

forgetting   factor of = 0.98 is applied.Figure 4 shows an 

output of OE model. Estimated parameters (solid lines) 

converge quickly to the true ones (dotted lines). A second 

order ARMAX model is simulated using  Matlab program  

by the RPLR approach (i.e. ELS) with Kalman   filter 

adaptation by assuming a parameter   variance of 0.001 

.The simulated results are shown in figure 5.Estimated 
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parameters tries to converge quickly to the true ones at the 

30
th

 instant itself. 

 

Figure3:Analysis of  input/output  

 
                 Figure 4: Output Error Model Estimation Using ROE 

         
  Figure 5: output  of  ARMAX Model Estimation using RPLRE approach 

 

 Figure 6: The performance of a simplified RLS algorithm, 

Kaczmarz’salgorithm (estimated parameters (solid lines) and true parameters 

(dashed). 

6. Conclusion 

Convergences of estimated parameters with the true ones are 

investigated with various model structures for a bioreactor 

process using Matlab. Output Error Model Estimation using 

ROE gave good results compared to the ARMAX model using 

RPLRE approach. Kaczmarz’salgorithm does not converge to 

the true coordinates.  
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