
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 5 May 2016, Page No. 16613-16616

Mrs Sowmya Aithal
1 IJECS Volume 05 Issue 5 May 2016 Page No.16613-16616 Page 16613

A Survey on Partial Reconfiguration Techniques

Mrs Sowmya Aithal
1

1PG Student, Dr. Ambedkar Institute of Technology,

Bangalore, aithalsowmya@gmail.com

Abstract: The technology evolvement has led to incorporation of more and more features into the system. One such feature is the flexibility

of changing the hardware and software at the time of fabrication. Such a feature is called reconfiguration. The reconfiguration allows the

user to incorporate more control over the hardware and software even at final stages of the process. Such type of reconfiguration is possible

in Field Programmable Gate Array (FPGA). There are various classifications of reconfiguration based on application of reconfiguring a

device usually FPGA. In this paper we go through the overview of partial reconfiguration and various techniques employed to achieve it.

Keywords: Dynamic Partial Reconfiguration, FPGA, Partial

Reconfiguration, Reconfiguration.

 I Introduction

The reconfiguration is the key factor in today’s world

of technology as it gives us control over the system at the

manufacturing level. The reconfiguration will allow adapting

to the system changes.

The Application Specific Integrated Circuit (ASIC) is

very fast and efficient when it is designed to do a specific task.

The hardware cannot be changed or reconfigured after

fabrication. The microprocessor or microcontroller is software

controlling hardware and it has more latency in computation as

it needs minimum 4 cycles to do any operation. The

reconfigurable device like FPGA is one where software

generates hardware and so is flexible. The Mask

Programmable Gate Array (MPGA) is also one of the

reconfigurable devices like FPGA. MPGA are transistor arrays

which can be configured into logic by metal interconnections,

made at the time of fabrication.

The reconfiguration is classified into static and

dynamic reconfiguration. Static reconfiguration is also called

Compile time reconfiguration. It is the simplest form and most

commonly used type of reconfiguration. Here the

reconfigurable resources are loaded with the respective

reconfigurations. When the operation begins the resources will

remain there until the operation finishes. Here the hardware

resources remain static throughout the operation. So it is aptly

called static reconfiguration.

 The dynamic reconfiguration is also called Run

time reconfiguration. It is one commonly used type of

reconfiguration. Here it uses dynamic allocation of resources

at run time. This increases the performance and use of

optimized circuits which are loaded and unloaded

dynamically during the operation. So in this way the flexibility

of the system is maintained and functional density is increased.

II Partial Reconfiguration

Partial Reconfiguration is the process of reconfiguring

logic of part of the system while other parts are operating

normally. The partial reconfiguration is effective as it allows

the designer to move or change fewer devices and thus reduce

power and improve system upgradability.

To program the FPGA we will have to change the bit-

file. The bit–file can be greater than 1MB so while

reconfiguration we have to alter the bit-file so it is too hectic

job so we go for partial reconfiguration.

There are two types of partial reconfiguration based

on the functionality. One is static partial reconfiguration and

other is dynamic partial reconfiguration.

Reconfigurable logic ImplementConfigure

Figure 1:

Static Partial Reconfiguration

Reconfigurable logic ImplementConfigure

Figure 2: Dynamic Partial Reconfiguration

In static partial reconfiguration, the device is not

active and it becomes active after the reconfiguration process

as illustrated in figure 1.

DOI: 10.18535/ijecs/v5i5.47

Mrs Sowmya Aithal
1 IJECS Volume 05 Issue 5 May 2016 Page No.16613-16616 Page 16614

Dynamic partial reconfiguration (DPR), also known

as active partial reconfiguration. Here the alteration can be

done when rest of FPGA is running. It is carried out to allow

FPGA to adapt to the reduced power, higher efficiency and

resource utilization. DPR is very useful in critical

environments where the devices need to continue operating

when some of the regions are redefined.

There are 2 basic styles of DPR on single FPGA. The

difference based partial reconfiguration and module based

partial reconfiguration.

Difference based partial reconfiguration
1
 is used when

small change is made to the design. This method is widely used

in Look Up Table (LUT) for changing the equations or in the

dedicated memory. Here the partial bitstream contains only the

difference between the old content and new content of an

FPGA. The switching configuration of a module from one

implementation to other is very quick as bitstream are very

small.

Module based partial reconfiguration
1
 is used when

we have to reconfigure large blocks of logic. Reconfigurable

modules are the distinct portions of the design which need to

be reconfigured. For any reconfigurable module some specific

properties and specific layout need to be laid out so we need to

plan the use of partial reconfiguration in FPGA.

Another technique is Early Access Partial

reconfiguration (EAPR)
 1

. Here the DPR system is used in

EAPR flow. The gray and Johnson counter are reconfigured

dynamically on Xilinx Virtex4- FX12 FPGA chip. The output

has four LEDs used to demonstrate the counter. Figure 3

illustrates the proposed architecture. The system consists of

LED control module and two partial reconfiguration modules

(PRM A1, PRM A2) which are placed on same partial

reconfiguration design. LED control module which enables

LEDs is a static module.

Input

Static Module
Bus

Macro

PR region A

PR Module A1

PR Module A2

Output

FPGA

Static Region

Reconfiguration

Region

Figure 3: Architecture of the design

EAPR Design Flow is shown in figure 4. Here in first

step of Hardware Descriptive Language Synthesis where the

top design, base design and PRM design.

In Top Design the top module which has clock

instantiations, I/O instantiations, partial reconfiguration

instantiations, signal instantiations and all macro instantiations

are done.

In Base Design the static modules are present and are

static throughout the reconfiguration. This module does

not contain clock or reset.

In PRM Design also clock is not included in the module

but can be referenced through the top module. In this design

we have 2 PRM’s one of Gray Counter another Johnson

Counter.

The Second step is Set Design Constraints. Here the

constraints are area group, reconfiguration mode, timing

constraint and location constraints. The constraint area group

defines which modules in top module is static and which are

reconfigurable. The reconfiguration mode constraint is applied

to specific group to be reconfigurable module. Location

constraints are set for each pin, clock pins and all bus macros.

The Third step is Implement Base Design where

translate, map, place and route is implemented. Before

implementation constraints file should be created.

The Fourth step is Implement PRM’s where each

PRM is implemented separately and follows translate, map,

place and route as in base design implementation.

The Final Phase is Merge where complete design is

built based on base design and each PRM’s. Here many partial

bit-streams are generated for each PRM’s and full bit-streams

are created initially to configure FPGA.

The EAPR technique is used for small blocks like

counters or multipliers etc, but for real time signals or video or

speech we cannot use the EAPR technique. The below

mentioned technique is used in such cases.

DOI: 10.18535/ijecs/v5i5.47

Mrs Sowmya Aithal
1 IJECS Volume 05 Issue 5 May 2016 Page No.16613-16616 Page 16615

HDL Design

Description

Set Design

Constraints(i.e.

Timing,I/O’s)

Implement Base

Design

Implement PR

Modules

Merge

Download

Figure 4: EAPR design Flow

Another technique for partial reconfiguration is for

video processing
2
. Here Speed Efficient Dynamic Partial

Reconfiguration Controller (SEDPRC) is used. Noise is present

in an image while generation, distribution or in display. The

image noise appears in different forms based on their place of

generation so we need different kinds of filters to be used

while processing an image. So having variety of filters is

useful but only one type of filter is used at a time. Now DPR

can be exploited to accommodate different types of filters. The
filters are deployed in slots at run time based on their

requirement. The configuration is shown in figure 5.

The reconfiguration controller can choose filters from

filter library and deploy them to slots at run time. By this

method we can have larger number of available filters than

normal number which fit into the target device. If a video filter

is getting swapped then the remaining pre/post processing and

audio processing block become optional. In the same way

audio processing can be swapped without stopping video

processing.

Signal pre/post

processing

Signal pre/post

processing

Filter Filter

Reconfiguration

Controller

F1 F2 F1 F2 F3 F4

FPGA

Video input from

Codec

Filtered video to

VGA

Audio Signal to/

From Codec

 Figure 5: Overview of the dynamic partial reconfigurable

audio/video signal processing system.

Here parallelism is exploited in FPGA’s by making video and

audio processing blocks running in parallel on the device and

in the process changing the functionalities of the system

without stopping the working ones.

The reconfiguration controller should be fast enough

to achieve filtering without losing data. In video processing the

filters should be swapped after the completion of first frame

processing and before the arrival of the second frame.

 The other technique for partial reconfiguration
3
 is use

of Internal Configuration Access Port (ICAP). ICAP is Xilinx

primitive which provides internal access to the configuration

logic of the FPGA from within FPGA fabric. The ICAP

interface is where the configuration data can be dynamically

loaded into the configuration memory of FPGA at runtime. It is

possible to read back of the configuration data from

configuration memory or to read the status registers of the

configuration logic with the ICAP interface.

ICAP

FPGA

Configuration

Memory

I(31:0)

WRITE

CE

Clock

O(31:0)

BUSY

Figure 6: Xilinx ICAP Primitive

ICAP interface consists of separate data ports for

reading (output) and writing (input) configuration data. For

DOI: 10.18535/ijecs/v5i5.47

Mrs Sowmya Aithal
1 IJECS Volume 05 Issue 5 May 2016 Page No.16613-16616 Page 16616

Virtex 4 the configuration data ports are 8 or 32 bits wide, for

Virtex 5 or Virtex 6 the configuration data ports are 8, 16 or 32

bits wide. The chip enable (CE), write enable (WRITE) signals

are the inputs along with the Clock. The output signal is

busy/ready (BUSY). The BUSY signal is low during WRITE

operations and high during read operations. The WRITE signal

writes when it is low and reads when high. At rising edge of

the clock the configuration data is written to the device, if

ICAP port is enabled. So the controlling of writing

configuration data is done by use of clock or enable input.

Partial reconfiguration when need to be done for

various combinations then we cannot use the above techniques

so the next type is LUT based partial reconfiguration
4
.

Xilinx FPGA’s allow some LUTs to function as Shift

Registers at the same time have LUT functionality, referred to

as SRL’s. This dual functionality allows shifting the

configuration bits, defining the LUT content and the behavior

without going for normal FPGA procedure like ICAP.

SRL16E

SR/LUT

SRL16E

SR/LUT

SRLC32E

SR/LUT

D CE

 Result reg

Input Element

Address

5..2

1..0

Config

Output

Figure 7: SRL based FU implementation.

The block diagram shown in figure 7 has SRL based

Functional Unit (FU). For the address comparator part which is

6 input one, we need to implement two 4-input SRL named

SRL16E. Both the LUTs check for the equality of the Most

Significant Bits (MSB) and Least Significant Bits (LSB) of the

input and the configured bit. The first of the LUTs check for

LSB other for MSBs. The second LUT implements the AND

gate to combine the results and then enable register to load the

result from the function part. The implementation of the

function part is done using one single 5 input LUT called

SRLC32E as its data width is tailored to its size. The

configuration lines are needed for serial shifting of

configuration data into LUTs. This type of partial

reconfiguration is fast but has communication overhead, the

latency is dependent on the largest SRL size (i.e 32 cycles.).

III Conclusion

The various partial reconfigurations are learnt and

various techniques employed in dynamic partial

reconfiguration is discussed with each technique used for

specific application or purpose. The partial reconfiguration

plays an important role in the field of technology based on

FPGA.

References

[1] Dynamic Partial Reconfiguration in FPGAs by Wang Lie,

Wu Feng-yan, Dept. of Computer Science ＆ Electronic

Information ,Guangxi University Nanning, China in Third

International Symposium on Intelligent Information

Technology Application IEEE ,2009

[2] High Speed Dynamic Partial Reconfiguration for Real

Time Multimedia Signal Processing by S. Bhandari, S.

Subbaraman, S. Pujari, F. Cancare, F. Bruschi, M. D.

Santambrogio and P. R. Grassi in 15th Euromicro Conference

on Digital System Design IEEE, 2012.

[3] High Speed Partial Run-Time Reconfiguration Using

Enhanced ICAP Hard Macro by Simen Gimle Hansen, Dirk

Koch and Jim Torresen in IEEE International Parallel &

Distributed Processing Symposium,2011.

[4] Lookup Table Partial Reconfiguration for an Evolvable

Hardware Classifier System by Kyrre Glette, Paul Kaufmann

in IEEE Congress on Evolutionary Computation (CEC), 2014.

[5] Performance Evaluation of Hybrid Reconfigurable

Computing Architecture over Symmetrical FPGA by Sunil Kr.

Singh, R. K. Singh, M. P. S. Bhatia, in International Journal of

Embedded Systems and Applications (IJESA),2012.

[6] Reconfigurable Computing Architecture Survey and

introduction by Ali Azarian, MahmoodAhmadi in IEEE, 2009.

[7] Partial and Dynamic Reconfiguration of FPGAs: a top

down design methodology for an automatic implementation by

Florent Berthelot, Fabienne Nouvel in Emerging VLSI

Technologies and Architectures, IEEE, 2006.

[8] A Physical Resource Management Approach to Minimizing

FPGA Partial Reconfiguration Overhead by Heng Tan and

Ronald F. DeMara in IEEE, 2006.

[9] Dynamic Fault Recovery Using Partial Reconfiguration for

Highly Reliable FPGAs by Gehad I. Alkady, Nahla A. El-

Araby, M.B. Abdelhalim, H.H. Amer, A.H. Madian in 4th

Mediterranean Conference on Embedded Computing, 2015.

[10] Modern Fault Tolerant Architectures Based on Partial

Dynamic Reconfiguration in FPGAs by Martin Straka, Jan

Kastil, Zdenek Kotasek in IEEE, 2010.

