

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume - 3 Issue - 8 August, 2014 Page No. 7857-7860

1
Suwaathy Kayalvily. D IJECS Volume 3 Issue 8 August, 2014 Page No.7857-7860 Page 7857

Load Balancing In Clustered Network
1
Suwaathy Kayalvily. D ,

2
Mangayarkarasi. S

1
Research Scholar,

2
Assistant Professor,

School of Computing Science

Vels University, Chennai – 43.

Abstract

Network has lots of connections and the server has n number of requests to be handled. To reduce the work load of the

server, we create subsequent sub servers and they are used to handle requests from clients. Each client can login and get

their required information from the sub server. A report is generated for all the requests handled by the sub servers and

the server maintains the log. A fully distributed load balancing algorithm is presented to scope with the load imbalance

problem. DSBCA algorithm is compared against a centralized approach in a production system and a competing

distributed solution presented in the literature. The Real time results indicate that our proposal is comparable with the

existing centralized approach and considerably outperforms the prior distributed algorithm in terms of load imbalance

factor, movement cost, and algorithmic overhead. The performance of our proposal implemented in the Ha-doop

distributed file system is further investigated in a cluster environment. The main reason for the formation of such clusters

is that clustered overlays enable their participants to find and exchange data relevant to their queries with less effort.

Keywords- server, cluster, load imbalance, data

1 Introduction

Many distributed real-time applications, such as audio and

video-conferencing, require the network to construct a

multicast path(tree) from a sender to multiple receivers.

Furthermore, real-time applications have quality-of-

service(Qos) requirements(e.g.bandwidth). The objective of

the routing protocol is to build a tree that is both feasible

(i.e. satisfies the requested Qos) and least costly. The cost of

a tree depends on the costs of its links. The cost of a link

should reflect the effect of allocating resources to the new

connection on existing and future connections. In this paper,

we examine the effect of various link cost functions on the

performance of two classes of multicast routing algorithms

under both uniform and skewed real-time workload. We also

investigate the impact of inaccurate network state

information. It aims at improving the performance of the

system and decrease the total execution time. The goal is to

find a minimum-cost (sub) network that satisfies some

specified property such as k-connectivity or connectivity on

terminals (as in the classic Steiner tree problem).Such a

formulation captures the (possibly incremental) creation cost

of the network, but does not incorporate the actual cost of

using the network.

2 System Model

 Network Load Balancing forwards each client request to

a specific host within a cluster according to the system

administrator's load-balancing policy. Each server in the

cluster is fully self-contained, which means it should be able

to function without any other in the cluster with the

exception of the database (which is not part of the NLB

cluster). This means each server must be configured

separately and run the Web server as well as any Web server

applications that are running. If you're running a static site,

all HTML files and images must be replicated across

servers. If you’re using ASP or ASP.Net, those ASP pages

and all associated support files must also be replicated.

Source control programs like Visual SourceSafe can make

this process relatively painless by allowing you to deploy

updated files of a project (in Visual Studio.Net or FrontPage

for example) to multiple locations simultaneously. To

construct scalable Web servers, system builders are using

distributed designs. An important challenge that arises in

distributed Web servers is the need to direct incoming

connections to individual hosts. Previous methods for

http://www.ijecs.in/

1
Suwaathy Kayalvily. D IJECS Volume 3 Issue 8 August, 2014 Page No.7857-7860 Page 7858

connection routing have employed a centralized node that

acts as a switchboard, directing incoming requests to

backend hosts.

 A certain number of additional servers can be added to

the load-balanced cluster to maximize scalability and stay

ahead of increasing demand. In addition to load balancing

the key is redundancy – if any machine in the cluster goes

down, NLB will re-balance the incoming requests to the still

running servers in the cluster. The servers in the cluster need

to be able to communicate with each other to exchange

information about their current processor and network load

and even more basic checks to see if a server went down.

When configuring Network Load Balancing, it is important

to enter the dedicated IP address, primary IP address, and

other optional virtual IP addresses into the TCP/IP

Properties dialog box in order to enable the host's TCP/IP

stack to respond to these IP addresses. To maximize

throughput and high availability, Network Load Balancing

uses a fully distributed software architecture. An identical

copy of the Network Load Balancing driver runs in parallel

on each cluster host. Network Load Balancing scales the

performance of a server-based program, such as a Web

server, by distributing its client requests among multiple

servers within the cluster. Each Network Load Balancing

host can specify the load percentage that it will handle, or

the load can be equally distributed among all of the hosts.

Using these load percentages, each Network Load Balancing

server selects and handles a portion of the workload. Clients

are statistically distributed among cluster hosts so that each

server receives its percentage of incoming requests. This

load balance dynamically changes when hosts enter or leave

the cluster. In this version, the load balance does not change

in response to varying server loads (such as CPU or memory

usage). For applications, such as Web servers, which have

numerous clients and relatively short-lived client requests,

the ability of Network Load Balancing to distribute

workload through statistical mapping efficiently balances

loads and provides fast response to cluster changes.

3 DSBCA ALGORITHM

 To generate clusters with more balanced energy and

avoid creating excessive clusters with many nodes, we have

used DSBCA algorithm. The basic idea of this algorithm is

based on connectivity on density and the distance from the

base station to calculate k(clustering radius). The clustering

radius is determined by density and distance: if two clusters

have the same connectivity density, the cluster much farther

from the base station has larger cluster radius; if two clusters

have the same distance from the base station, the cluster

with the higher density has smaller cluster radius. With

farther distance from the base station and lower connectivity

density, the cluster radius is larger; on the contrary, with

closer distance from the base station and lower connectivity

density, the cluster radius is smaller. In order to reduce

clusters structure change, we also involve in weight

computation of the nodes such parameters as residual

energy, connection density and times of being elected as

cluster head nodes. DSBCA follows a distributed approach

to establish hierarchical structure in self-organizing mode

without central control. The purpose of DSBCA is to

generate clusters with more balanced energy and avoid

creating excessive clusters with many nodes. The clusters

near the base station also forward the data from further

clusters (all clusters need to communicate with the base

station, but long-distance wireless communication consumes

more energy), and as we all know, too many members in a

cluster may bring excessive energy consumption in

management and communication. Hence, based on the

above concerns, DSBCA algorithm considers the

connectivity density and the location of the node, tries to

build a more balanced clustering structure.

 Using this algorithm the total number of distributed system

or node is selected and the size of each node is specified.

Then the distributed nodes is balanced to form hierarchical

structure (balancing) and all the sub-nodes also forms a

hierarchical structure (rebalancing). The nodes are added to

the cluster based on its size. After forming the cluster the

authenticated users can access the files. DSBCA sets the

threshold of cluster size. The number of cluster nodes cannot

exceed the threshold to avoid forming large clusters, which

will cause extra overhead and thus reduce network lifetime.

When the cluster head node receives Join_message sent by

the ordinary node, it will compare the size of cluster with

threshold to accept new member and update the count of

cluster nodes if the size is smaller than threshold, or reject

the request. If the rejected node has cluster head already, the

clustering process terminates. Otherwise, it finds another

appropriate cluster to join. DSBCA algorithm avoids the

fixed cluster head scheme (cluster head manages cluster and

forwards data, so it consumes energy faster than other

nodes), with periodic replacement to balance the node

energy consumption. The cluster head gathers the weight of

all member nodes, and then selects the node with highest

weight as the next head node. DSBCA can form more

reasonable cluster structure to avoid frequent exchange of

the nodes weight information and temporary cluster head

broadcasting after the first clustering. As a result, the energy

consumption decreases effectively. The clusters formed by

DSBCA based on the distance from base station, distribution

of nodes and residual energy accord with actual network.

Hence, it achieves a better performance when the number of

nodes changes.

Figure 1

1
Suwaathy Kayalvily. D IJECS Volume 3 Issue 8 August, 2014 Page No.7857-7860 Page 7859

Figure 1 shows the cluster formation and various users

accessing the cluster (sub server) to get their required data.

Depending upon the technology used to provide this

functionality, a certain number of additional servers can be

added to the load-balanced cluster to maximize scalability

and stay ahead of increasing demand. The performance of

the nodes in load balancing environment depends upon the

selection of balancing instants and the load exchange

allowed between nodes. If the network delays are large it

would be more advisable to reduce the amount of load

exchange so as to avoid the time wasted. So the amount of

load transfer has to be chosen carefully and scheduling has

to be done regularly in order to maintain load balancing in

the system. When an external load arrives at a node, only the

receiver node executes, which aims to minimize the average

completion time.

Figure 2

The figure 2 depicts the use of DSBCA algorithm. This

eliminates the dependence on central nodes. The storage

nodes are structured as a network based on distributed hash

tables and they enable nodes to self-organize and repair

while constantly offering lookup functionality in node

dynamism, simplifying the system provision and

management. Our algorithm is compared against a

centralized approach in a production system and a

competing distributed solution presented in the literature.
The simulation results indicate that although each node

performs our load balancing algorithm independently

without acquiring global knowledge.

4 Conclusion

In this paper, our proposal strives to balance the loads of

nodes and reduce the demanded movement cost as much as

possible, while taking advantage of physical network

locality and node heterogeneity. In the absence of

representative real workloads (i.e., the distributions of file

chunks in a large scale storage system) in the public domain,

we have investigated the performance of our proposal and

compared it against competing algorithms through

synthesized probabilistic distributions of file chunks and a

fully distributed load balancing algorithm is presented to

cope with the load imbalance problem. The simulation result

shows that the algorithm is feasible and has better

performance. In addition, the scenario we propose is

scalable and works for different network sizes.

References

[1] Rajkumar Buyya et.al. “High Performance Cluster

Computing” Vol 1, Prentice Hall PTR, 1999

[2] G. Pfister. “In Search of Clusters. Prentice Hall”, 2
nd

Edition, 1998

[3] “Clustering” by Rui Xu, Don Wunsch, ieee press series on

computational intelligence.

[4] “Cluster Analysis” ,5th edition, Brian S. Everitt , Sabine

Landau , Morven Leese , Daniel Stahl

[5] “Server load balancing” By Tony Bourke Copyright © 2001

O'Reilly & Associates,Inc. Allrights reserved. Printed in the

United States of America. August 2001.

[6] Zhu Y, Hu Y. Efficient, proximity-aware load balancing for

dht-based p2p systems. IEEE Trans Parallel Distributed Syst

(TPDS);2005.

[7] Dahlin et al, “Eddie: A Robust and Scalable Internet

Server”. Ericsson Telecom AB. Sweden. 1998.

[8] Damani et al. “ONE-IP: Techniques for Hosting a Service

on a Cluster of Machines”, Sixth International WWW

Conference, April 1997.

[9] Daniel M. Dias, William Kish, Rajat Mukherjee, and

RenuTewari, “A Scalable and Highly Available Web

Server”,Proceedings of IEEE COMPCON'96.

1
Suwaathy Kayalvily. D IJECS Volume 3 Issue 8 August, 2014 Page No.7857-7860 Page 7860

[10] M. Chatterjee, S. K. Das, and D. Turgut, “WCA: A

weighted clustering algorithms for mobile ad hoc networks,”

Cluster Computing., vol. 5, no. 2, pp. 193–204, 2002.

[11] Y. Fernandess and D. Malkhi, “K-clustering in wireless ad-

hoc networks,” in Proc. 2nd ACM Workshop Principles Mobile

Compuingt. Conf.,Oct. 2002, pp. 31–37.

[12]http://msdn.microsoft.com/en-us/library/ff648960.aspx

[13]http://docs.oracle.com/cd/E13222_01/wls/docs81/cluster/loa

d_balancing.html

[14]http://www.iis.net/learn/web-hosting/configuring-

servers-in-the-windows-web-platform/network-load-

balancing

[15]https://www.vmware.com/files/pdf/implmenting_ms_ne

twork_load_balancing.pdf

[16]http://technet.microsoft.com/en-

us/library/cc725691.aspx

[17] Paul Barford and Mark Crovella. Generating

Representative Web Workloads for Network and Server

Performance Evaluation. In Proceedings of ACM SIGMETRICS,

1998.

[18] E.D. Katz, M. Butler, and R. McGrath, “A scalable HTTP

server: The NCSA prototype. In Proceedings of the First

International World-Wide Web Conference, May 1994.

[19] D. Anderson, T. Yang, V. Holmedahl, and O.H.

Ibarra.“SWEB: Towards a Scalable World Wide Server on

Multicomputers”. In Proceedings of IPPS'96, April 1996.

[20] Eric Anderson, David Patterson, and Eric Brewer. “The

MagicRouter: An application of fast packet interposing.”

Available from

http://HTTP.CS.Berkeley.EDU/~eanders/projects/magicrouter

/osdi96-mr-submission.ps, May1996.

[21] Jeffery Mogul. “Network behavior of a busy Web server

and its clients”. Research Report 95/5, DEC Western Research

Laboratory, October 1995.

