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Abstract 

While transmitting information over multipath channels, multiple access interference cannot be easily 
eliminated. However, it is possible to design detectors that estimate the channel parameters accurately. The 
conventional detector may be unable to recover the transmitted information from the weaker users. The need 
for accurate parameter estimates in the presence of multiple access interference (MAI) has led the 
development of joint multiuser detectors/parameter estimators. These estimates are subsequently used for 
subscriber location estimation. Accurate and cost effective cellular localization would enable a diverse 
variety of new applications in the areas of tracking and tracing, access to emergency services, increased 
safety, monitoring, leisure, sports and entertainment. In this paper, the detector based on divided difference 
Kalman filter (DDF) algorithm in a closely spaced multipath fading channel is being investigated and 
analyzed for asynchronous direct-sequence (CDMA). The estimated delay is used to radio location purposes. 
The numerical analysis augmented by extensive simulations show that the proposed DDF based detector is 
simpler to implement, and more resilient to near-far interference in CDMA networks and is able to track 
closely spaced paths. 
 
Index Terms—CDMA Channel Estimation, Multiple Access Interference, multiuser detection, Non-linear 
state estimation, Kalman filters. 
 
Introduction 
In recent years, a lot of effort has been put in developing powerful channel estimation algorithms. In the real 
world wireless communication systems, the transmitted signals are impaired by a variety of phenomenon 
such as multipath, multiple access interference, frequency selective fading, time varying channel effects, 
synchronization problems and noise. At the receiver the received signal is represented as a function of 
unknown channel coefficients and time delays. If these parameters are known accurately, then the data 
symbol estimation improves dramatically. 
Channel state information (CSI), which is typically represented by the channel parameters, is required for 
efficient communications. Many algorithms have been proposed to the joint estimation of the channel 
coefficients and delays. In particular, the joint estimation of the arriving multi-path time delays and 
corresponding channel tap gains is quite challenging, and has led the development of several joint multiuser 
parameter estimators. Joint amplitude/data estimation for the case of known delays has been proposed in [1]. 
A joint symbol detection and timing estimation based on particle filtering has been presented in [2]. Particle 
Filtering have also been applied to blind multiuser detection (MUD) over flat fast fading channels [3-4]. 
The Kalman filter framework based methods were considered in [5-12], where unscented Kalman filter 
(UKF) and extended Kalman filter (EKF) has been applied to parameter estimations. Filtering algorithms 
based on Kalman framework are used to estimate state of a system with noisy measurements. The EKF, that 
assumes the process noise and measurement noise to be zero-mean Gaussian white-noise, provides 
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approximate solution when the models are nonlinear when the posterior density is non-Gaussian. The EKF 
linearizes the underlying model using first order Taylor series expansion. However, such an expansion 
introduces large errors in the estimation of covariance matrices and also it requires calculation of Jacobian 
matrices which may be difficult for nonlinear systems. 
The DDF is based on the divided-difference approximation of the derivatives derived from Stirling’s 
interpolation formula [13].When compared with the EKF and UKF, the second order DDF results in a more 
accurate posterior covariance from more accurate Gaussian statistics. Also DDF has a smaller absolute error 
in the fourth-order term and also guarantees positive semi-definiteness of the posterior covariance, while the 
UKF may result in a non-positive DDF has a smaller absolute error in the fourth-order term and also 
guarantees positive semi-definiteness of the posterior covariance, while the UKF may result in a non-
positive. 
Many of the algorithms presented in previous work have focused on single-user and/or single-path 
propagation models. However, in practice, the arriving signal typically consists of several epochs from 
different users, and it becomes therefore necessary to consider multi-user/multi-path channel models. The 
contribution in this paper is twofold: first, it presents a joint estimation algorithm for channel coefficients 
and time delays in CDMA environment using second order DDF with a particular emphasis on closely 
spaced paths in a multipath fading channel, and second, and more important, it shows the effect of pulse 
shaping on the accuracy of the estimated parameter. 
The rest of the paper is organized as follows. In Section 2, the signal and channel models are presented. 
Section 3 provides a description of the nonlinear filtering method used for multiuser parameter estimation 
that utilizes divided difference filter. Section 4 describes computer simulation and performance discussion 
followed by the conclusion. 

 
The System model  
We consider a typical asynchronous CDMA system model where K users transmit over an M-path fading 
channel. The received baseband signal sampled at st lT=  is given by  

, , ,
1 1

( ) ( ) ( ( )) ( )
l

K M

l i l m k l b k i
k i

r l c l d a l m T l n lτ
= =

= − − +∑∑         (1) 

where , ( )k ic l represents the complex channel coefficients, , lk md is the mth symbol transmitted by the kth user, 

[ ]( ( ) /l k bm l l Tτ= − , bT is the symbol interval, ( )ka l  is the spreading waveform used by the kth user, , ( )k i lτ  is 

the time delay associated with the ith path of the kth user, and ( )n l  represents Additive White Gaussian Noise 
(AWGN) assumed to have a zero mean and variance 2 2

0[| ( ) | ] / sE n l N Tσ = =  where sT is the sampling time.  
 
Implementation of DDF to CDMA Multiuser Parameter Estimation 
Following the work in [6], we adopt a state-space model representation where the unknown channel 
parameters (path delays and gains) to be estimated are represented using the following 2 1KM ×  vector, 

[ ]=x c;τ                  (2) 
with     11 12 1 21 2 1[ , ,..., , ,..., ,..., ,..., ]T

M M K KMc c c c c c c c=  
and      11 12 1 21 2 1[ , ,..., , ,..., ,..., ,..., ]T

M M K KMτ τ τ τ τ τ τ τ=  
The complex-valued channel amplitudes and real-valued time delays of the K users are assumed to obey a 
Gauss- Markov dynamic channel model [3], i.e. 

( 1) ( ) ( )c cc l c l l+ = +F v       (3)  
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( 1) ( ) ( )l l lτ ττ τ+ = +F v     (4) 
where cF and τF  are KM KM× state transition matrices for the amplitudes and time delays 

respectively whereas ( )cv l  and ( )v lτ are 1K × mutually independent Gaussian random vectors with zero 
mean and covariance given by E{ ( ) ( )}T

c c ij cv i v j δ= Q , E{ ( ) ( )}T
ijv i v jτ τ τδ= Q , E{ ( ) ( )} 0 ,T

cv i v j i jτ = ∀  with 2
c cσ=Q I and 

2
τ τσ=Q I  are the covariance matrices of the process noise cv and vτ respectively, and ijδ is the two-

dimensional Kronecker delta function equal to 1 for i j= , and 0 otherwise. 
The state model can be written as  

( 1) ( ) ( )l l l+ = +x Fx v      (5) 
where  

0 0
, ,

0 0
c cT T

c τ
τ τ

   
 = = =    

   

F Q
F v v v Q

F Q
are 2 2KM KM×  state transition matrix, 2 1KM ×  process noise vector 

with mean of zero and covariance matrix respectively. 
 
The scalar measurement model follows from the received signal of (1) by  

( ) ( ( )) ( )z l h l lη= +x               (6)  
where the measurement ( ) ( )z l r l= ,  
and  

, , ,
1 1

( ( )) ( ) ( ( ))
l

K M

k i k m k l b k i
k i

h l c l d a l m T lτ
= =

= − −∑∑x .  

The scalar measurement z(l) is a nonlinear function of the state ( )lx . Given the state-space and 
measurement models, we may find the optimal estimate of ˆ ( )lx denoted as ˆ ( | ) { ( ) | }ll l E l z=x x , with the 
estimation error covariance  

[ ][ ]{ }ˆ ˆP E ( ) ( | ) ( ) ( | ) |T ll l l l l l z= − −x x x x              (7) 

where lz denotes the set of received samples up to time l, { ( ), ( 1),..., (0)}z l z l z− . 
 
DDF 
DDF, unlike EKF, is a sigma point filter (SPF) where the filter linearizes the nonlinear dynamic and 
measurementfunctions by using an interpolation formula through systematicallychosen sigma points. The 
linearization is based onpolynomial approximations of the nonlinear transformationsthat are obtained by 
Stirling’s interpolation formula, ratherthan the derivative-based Taylor series approximation 
[13].Conceptually, the implementation principle resembles that ofthe EKF, however, it is significantly 
simpler because uses afinite number of functional evaluations instead of analyticalderivatives. It is not 
necessary to formulate the Jacobianand/or Hessian matrices of partial derivatives of the nonlineardynamic 
and measurement equations. Thus, the new nonlinearstate filter, Divided Difference Filter (DDF), can also 
replacethe Extended Kalman Filter (EKF) and its higher-order estimatorsin practical real-time applications 
that require accurateestimation, but less computational cost. The derivative free, deterministic sampling 
based DDF outperforms the EKF interms of estimation accuracy, filter robustness and ease 
ofimplementation. 
Consider the nonlinear equations 
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1 ( , , )
( , , )

k k k

k k k

k
k

+ =
=

x f x w
y h x v             (8) 

where kx  is the 1n× state vector, ky is the 1m× observation vector, kw is the state noise process vector and 

kv is the 1r× measurement noise vector. It is assumed that the noise vectors are uncorrelated white Gaussian 
processes with expected means and covariances 

{ }
{ }

{ } , [ ][ ]

{ } , [ ][ ]

T
k k k j k k

T
k k k j k k

E E

E E

= − − =

= − − =

w w w w w w Q

v v v v v v R
 

Let the square Cholesky factorizations 

0
T= x xP S S  
T= w wQ S S  

The predicted state vector is  

1
ˆ ˆ( , , )

k k k k
+

− =x f x w  

The predicted state covariance is determined by the symmetric matrix product 

1 ( 1)( ( 1))T
k k k−
+ = + +- -

x xP S S              (9) 
where 

(1) (1)
ˆ( 1) ( 1) ( 1)xx xwk k k + = + + 

-
xS S S  

with 

  
{ }

{ }

(1)
ˆ , ,

(1)
, ,

1 ˆ ˆ( 1) ( , ) ( , )
2
1 ˆ ˆ( 1) ( , ) ( , )
2

xx i k x j k i k x j k

xw i k k w j i k k w j

k h h
h

k h h
h

+ = + − −

+ = + − −

S f x s w f x s w

S f x w s f x w s
 

where ,x js is the column of xS and ,w js is the column of wS .  

the square Cholesky factorizations are performed 

1
T

k
T

−
+ =

=

- -
x x

v v

P S S
R S S

 

The predicted observation vector 
1

ˆ
k+

−y and its predicted covariance are 

1 1 1

1

ˆ ˆ( , , 1) (10)

( 1) ( 1) (11)
k k k

vv T
k v v

k

k k
+

− −
+ +

+

= +

= + +

y h x v

P S S
 

 
where  

(1) (1)
ˆ( 1) ( 1) ( 1)v yx yvk k k + = + + S S S  

{ }

{ }

(1)
ˆ 1 , 1 1 , 1

(1)
1 1 , 1 1 ,

1 ˆ ˆ( 1) ( , ) ( , )
2
1 ˆ ˆ( 1) ( , ) ( , )
2

yx i k x j k i k x j k

yv i k k v j i k k v j

k h h
h

k h h
h

− − −
+ + + +

− −
+ + + +

+ = + − +

+ = + − +

S h x s v h x s v

S h x v s h x v s
 

where ,x j
−s is the column of -

xS  and ,v js is the column of vS . The innovation covariance 1
vv
k+P  is computed as  

1 1 1
vv yy
k k k+ + += +P P R             (12) 
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with 

  ( )(1) (1)
ˆ ˆ1 ( 1) ( 1)

Tyy
k yx yxk k+ = + +P S S                                                                   (13) 

Finally the cross covariance matrix is determined by 

( )(1)
ˆ1 ( 1) ( 1)

Txy
k x yxk k−
+ = + +P S S                                                                     (14) 

The filter gain 1k+Κ , the updated estimated state vector 1ˆ k
+
+x  and the updated covariance 1k

+
+P are computed 

using 
1

1 1 1( )xy vv
k k k

−
+ + +Κ = P P        (15) 

( )1 1 1 1 1ˆ ˆ ˆk k k k k
+ −
+ + + + += +Κ −x x y y       (16) 

1 1 1 1 1
vv T

k k k k k
+ −
+ + + + += −Κ ΚP P P       (17) 

 
The second-order divided difference filter (DDF2) is obtained by using the calculation of the mean and 
covariance in the second-order polynomial approximation section. First, the following additional matrices 
containing divided difference are defined  

{ }

{ }

(2)
ˆ , ,

(2)
, ,

1 ˆ ˆ ˆ( 1) ( , ) ( , ) 2 ( , )
2

1 ˆ ˆ ˆ( 1) ( , ) ( , ) 2 ( , )
2

xx i k x j k i k x j k i k k

xw i k k w j i k k w j i k k

k h h

k h h

γ
γ

γ
γ

−
+ = + + − −

−
+ = + + − −

S f x s w f x s w f x w

S f x w s f x w s f x w

 

where ,x js is the jth column of xS , ,w js is the jth column of  wS  and 2hγ =  is a constant parameter. The 

predicted state equation is 
 

{ }

{ }

1

, ,
1

, ,
1

( )ˆ ˆ( , )

1 ˆ ˆ( , ) ( , )
2

1 ˆ ˆ( , ) ( , )
2

x

x

x w
k k k

n

k s p k i k s j k
p

n

k k w p i k k s p
p

n n

h h

h h

γ
γ

γ

γ

−
+

=

=

− +
=

+ + + −

+ + + −

∑

∑

x f x w

f x s w f x s w

f x w s f x w s

     (18) 

where xn denotes the dimension of the state vector, and wn is the dimension of process noise vector. The 
Cholesky factorization of the predicted covariance is computed as 

(1) (1) (2) (2)
ˆ ˆ( 1) ( 1) ( 1) ( 1) ( 1)xx xw xx xwk k k k k + = + + + + 

-
xS S S S S  

The predicted covariance is computed using 

1 ( 1)( ( 1))T
k k k−
+ = + +- -

x xP S S  
the predicted observation vector 

{ }

{ }

1 1 1

1 , 1 1 , 1
1

1 1 , 1 1 ,
1

( )ˆ ˆ( , )

1 ˆ ˆ( , ) ( , )
2

1 ˆ ˆ( , ) ( , )
2

x

x

x v
k k k

n

k x p k k x p k
p

n

k k v p k k v p
p

n n

h h

h h

γ
γ

γ

γ

− −
+ + +

− − − −
+ + + +

=

− −
+ + + +

=

− +
=

+ + + −

+ + + −

∑

∑

y h x v

h x s v h x s v

h x v s h x v s

   (19) 
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where vn is the dimension of the measurement noise, ,x p
−s is the pth column of -

xS , and ,v ps is the pth column 

of vS . The innovation covariance matrix is given by 

1 ( 1) ( 1)vv T
k v vk k+ = + +P S S  

with  
(1) (1) (2) (2)

ˆ ˆ( 1) ( 1) ( 1) ( 1) ( 1)v yx yv yx yvk k k k k + = + + + + S S S S S  

{ }

{ }

(2)
ˆ 1 , 1 1 , 1 1 1

(2)
1 1 , 1 1 , 1 1

1 ˆ ˆ ˆ( 1) ( , ) ( , ) 2 ( , )
2

1 ˆ ˆ ˆ( 1) ( , ) ( , ) 2 ( , )
2

yx i k x j k i k x i k i k k

yv i k k x j i k k x j i k k

k h h

k h h

γ
γ

γ
γ

− − − − −
+ + + + + +

− − − − −
+ + + + + +

−
+ = + + − −

−
+ = + + − −

S h x s v h x s v h x v

S h x v s h x v s h x v
 

The cross correlation matrix is  

( )(1) (1)
ˆ ˆ1 ( 1) ( 1)

Txy
k x yxk k+ = + +P S S        (20) 

The filter gain 1k+Κ , the updated estimated state vector 1ˆ k
+
+x  and the updated covariance 1k

+
+P are computed 

using 
1

1 1 1( )xy vv
k k k

−
+ + +Κ = P P         (21) 

( )1 1 1 1 1ˆ ˆ ˆk k k k k
+ −
+ + + + += +Κ −x x y y        (22) 

1 1 1 1 1
vv T

k k k k k
+ −
+ + + + += −Κ ΚP P P        (23) 

  
Simulation Results: 
For the purpose of simulation we have considered two pulse shapes i.e. rectangular, and raised cosine pulse. 
The spreading codes length is chosen to be 32 with 16 samples per chip. The simulations have been carried 
out for a Rayleigh fading channel for three users each with three closely spaced paths with nominal powers 
of 1.0, 0.9 and 0.5 respectively. The state transition matrix is assumed to be 0.999=F I  and 0.001=Q I  where 
I  is the identity matrix. We note that the data bits,

,k md , are not included in the estimation process, but are 

assumed unknown apriori. In the simulations, we assume that the data bits are available from decision-
directed adaptation, where the symbols 

,k md  are replaced by the 
,k md decisions shown in Figure 1. We also 

assumed that the filter is initialized by an estimator close to the true values. Large and random data sets were 
used to evaluate the performance degradation. The tracking for the weaker user for the 1st path has been 
carried out where the true delay is 111τ =  samples. Figure 2 shows the timing epoch of the first arriving 
path in a multiuser scenario with three multipath separated byhalf a chip. We have considered the case of the 
weaker user and two pulse shapes have been compared. Proposed estimator converges to the close to the true 
in the presence of MAI and is able to track desired user delay even when the paths are closely spaced. Also 
the estimator shows better performance for the raised cosine pulse. Similarly the observation can be made 
for the channel coefficients as well which have been shown in Figure (3) for the RRC pulse only. 
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Figure 1 Multiuser parameter estimation receiver 

 

 
Figure 2. Time delays tracking of the weaker path 
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Figure 3. Time varying channel amplitude tracking of the weaker path 
 
Multiuser Radiolocation 
For the radio channel between the mobile and base station we assume that the mobile signal is subject to 
attenuation including distance path loss and lognormal shadowing [14], 

/10( , ) ( )10 BSi

i i iBS BS BSd p d ξα ξ =      (24) 

where ( )p d  is the distance path loss, and 
iBSξ is the shadowing variable. The path loss part follows a two-

segment model with breakpoint at od  

10( ) 10 log ( )p d n d=           (25) 
where nis the path loss slope assumed to take two different values, depending on whether the mobile is 

within or beyond the given breakpoint. In the subsequent numerical simulations, we use the slopes 2n =  
and a breakpoint at 200m, with a cell radius of 2km. For a given mobile, shadowing vis-à-vis the different 
base stations is partially correlated, and given by: 

iBS c ia bξ ξ ξ= +  where cξ and iξ are the common and 

independent terms, respectively, and 2 2 1a b+ = . In the numerical results, we assume the shadowing 
variables are log-normal with standard deviation 8sh dBσ = , and 50% correlation ( 1/ 2)a b= = . 
Since time-of-arrival estimation accuracy strongly depends on the received MAI levels, this issue can be a 
limiting factor in mobile radiolocation which typically requires TOA data from at least three base stations. 
For example, if we assume that the mobile is served by the center base station BS1 and will be located by 
the strongest seven base stations BS1, BS2, . . . , BS7 (sorted in a descending order from the base station that 
receives the highest average received power), then we define the ratio of its average received power as iBS

compared to BS1 as 
1

i
i

P
Pβ =  where iP  is the received power in 1BS and 1 2 3 71 ...β β β β= ≥ ≥ ≥ ≥ . [14]. 

It is found that this ratio can fluctuate widely depending on the mobile position relative to the base stations 
of interest. As an illustration, we present examples for four scenarios (cases 1, 2 and 3) that will be used in 
the subsequent numerical results. Case-1 refers to a mobile located in close proximity to its “serving” BS1, 
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with a signal at least 10dB above that at the other two base stations. Case-2 represents a two-way soft 
handover scenario, with the mobile power at base station 2 within 3dB (as an example) from that at BS1, 
and case-3 denotes the 3-way soft handover situation where the mobile signal is within 3dB at both BS2 and 
BS3 compared to BS1[14]. 
In this paper, we are considering only line-of-sight (LOS) propagation, and base stations assumed 
synchronized. The TOA measurements recorded at each BS is directly proportional to the mobile-base 
distance. We follow the approximate maximum likelihood (AML)[14] for the purpose of radiolocation. 
Figure 4 shows the cumulative distribution function (CDF) of the mobile position estimation error for the 
three cases outlined in Section 2 (with their relevant parameters in Table 1. It is clearly seen that the case for 
3-way soft handover gives the best performance, followed by 2-way soft handover one, and the case when 
the mobile is closest to its own base station is worst. This is because the MS, closer to the serving BS, needs 
to transmit at lower power levels to maintain the fixed received power at the serving BS. This is due to the 
fact that as the distance to the neighboring BSs increases, the signal experiences greater path loss. So the 
received signal power at the neighboring BSs reaches lower levels, making position location error to rise 
sharply. 
 
  β₁    β₂    β₃    β₄    β₅    β₆    β₇ 
Case 1 1 0.0216 0.0113 0.0069 0.0045 0.0031 0.0021 
Case 2 1 0.6982 0.2215 0.1202 0.0735 0.0485 0.0331 
Case 3 1 0.7922 0.6353 0.2993 0.1701 0.1065 0.0706 

Averages of β-factors for various soft-handover link conditions 
when shadowing st.dev. 8sh dBσ = and the cell radius is 2km [14] 

TABLE I 
Averages of the Beta Factors 
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Figure 4. Cumulative distribution function (CDF) for the residual mobile positioning error for 3cases using 
DDF 

Conclusion 
In this paper, we have evaluated the performance of a DDF parameter estimation accuracy in an 
asynchronous CDMA has been evaluated in the presence of MAI and additive Gaussian noise. It is shown 
that the DDF achieves better performance and enjoys moderate complexity when employed to estimate the 
channel parameters on the received signals in multiuser/multipath scenarios. A general derivation the 
processing steps was presented, followed by a specialization to the case of time delay and channel gain 
estimation for multipath CDMA signals, with particular focus on closely spaced multipath epochs. Such 
estimates result in higher accuracy in multiuser radiolocation scenario. 
 
References 
[1] X. Wang and R. Chen, “Adaptive Bayesian multiuser detection for synchronous CDMA with Gaussian 
and impulsive noise” IEEE Trans.Signal Processing, vol.47,pp.2013-2028, Jul. 2000. 
[2] T. Ghirmai, M. F. Bugallo, J. Mguez, and P. M. Djuric, “Joint symbol detection and timing estimation 
using particle filtering,” in Proc. IEEE Int. Conf. , Acoustics, Speech, Signal Processing (ICASSP ’03), vol. 
4, pp. 596-599, Hong Kong, April 2003. 
[3] Y. Huang, J. Zhang, I. Tienda-Luna, P. M. Djuric, and D. P. Ruiz, “Adaptive blind multiuser detection 
over flat fast fading channels using particle filtering,” EURASIP Journal on Wireless Communications and 
Networking , 2005:2, 130-140, 2005. 
[4] Q. Yu, G. Bi, and L. Zhang, “Blind Multiuser Detection for Long Code Multipath DS-CDMA Systems 
with Bayesian MC Techniques,” Journal of Wireless Personal Communication , Vol. 39: pp. 265278, 2006. 
[5] Aydin, E. ; Cirpan, H.A., “Bayesian-based iterative blind joint data detection, code delay and channel 
estimation for DS-CDMA systems in multipath environments,” 7th International Wireless Communications 
and Mobile Computing Conf., pp.1413 - 1417, 2011. 
[6] J. J. Caffery Jr. and G. L. Stüber, “Nonlinear Multiuser Parameter Estimation and Tracking in CDMA 
Systems”, IEEE Transactions on Communications, vol. 48, pp.2053-2063, December 2000. 
[7] K. J. Kim and R. A. Iltis, “Joint detection and channel estimation algorithms for QS-CDMA signals over 
time-varying channels,” IEEE Trans.Commun., vol. 50, pp. 845–855, May 2002. 
[8] Abdelmonaem Lakhzouri , Elena Simona Lohan , Ridha Hamila ,Markku Renfors, “Extended Kalman 
filter channel estimation for line of sight detection in WCDMA mobile positioning”, EURASIP Journal on 
Wireless Communications and Networking, Issue 4, 2008. 
[9] Ulrich Klee, Tobias Gehrig, John McDonough,” Kalman Filters for Time Delay of Arrival-Based Source 
Localization”, EURASIP Journal on Applied Signal Processing, 2006. 
[10] Liu shunlan, Ma yong, Zhou Haiyun “Passive location by single observer with the Unscented Kalman 
Filter”, IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for 
Wireless Communications, vol. 2, pp. 1186- 1189, 2005. 
[11] T. J. Lim and Y. Ma, “The Kalman filter as the optimal linear minimum mean-squared error multiuser 
CDMA detector,” IEEE Trans. Inform. Theory, vol. 46, no. 7, pp. 2561–2566, 2000. 
[12] B. Flanagan, C. Suprin, S. Kumaresan, and J. Dunyak, “Performance of a joint Kalman demodulator for 
multiuser detection,” in Proc. 56th IEEE Vehicular Technology Conference (VTC ’02), vol. 3, pp. 1525– 
1529, Vancouver, Canada, 2002. 
[13] Alfriend, K.T. and Lee, D-J., “Nonlinear Bayesian Filtering For Orbit Determination and Prediction,” 
6th US Russian Space Surveillance Workshop, St. Petersburg, country-regionRussia, pp.22-26, 2005. 



Zahid Ali , International Journal Of Engineering And Computer Science 2:1 Jan 2013 (240-250) 
 

 
 

Pa
ge

25
0 

[14] Z. Ali, M.A.Deriche, M.A.Landolsi, "CDMA multiuser radiolocation", 2010 IEEE 21st International 
Symposium on PIMRCWorkshops, pp.233- 237, 2010. 


