
 

www.ijecs.in 
International Journal Of Engineering And Computer Science ISSN:2319-7242 
Volume - 3 Issue - 8 August, 2014 Page No. 7555-7560 

 

 

Purnima Mittal, IJECS Volume 3, Issue 8, August 2014 ,Page No.7555-7560                                                                    Page 7555 
 

 A survey and comparative analysis on different 

algorithms for Blind Source Separation  

Purnima Mittal 

Electronics and Communication Department 

BPRCE, Gohana, Haryana-131301 

Purnima.mittal@gmail.com 
 

Abstract: Blind separation for speech signal is the original purpose of BSS problem, and becomes the research attention of signal 

processing in recent years. Separation of speeches has an important theoretical importance in voice communications, acoustic target 

detection, etc. Blind source separation is a well-established signal processing problem. The sources to be estimated present some diversity in 

order to be efficiently retrieved. Assuming the transmitted signals to be mutually independent in a linear multiple-input-multiple-output 

(MIMO) memory-less system, the transmitted signal is subjected to Additive white Gaussian noise. The received signals are, hence, corrupted 

by inter-user interference (IUI), and we can model them as the outputs of a linear multiple-input-multiple-output (MIMO) memory-less 

system. In this paper, we have surveyed different techniques of blind signal separation. 
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1. Introduction 

Blind signal separation, also known as blind source separation, 

is the separation of a set of source signals from a set of mixed 

signals, without the aid of information (or with very little 

information) about the source signals or the mixing process. 

This problem is in general highly underdetermined, but useful 

solutions can be derived under a surprising variety of 

conditions. Much of the early literature in this field focuses on 

the separation of temporal signals such as audio [11]. 

However, blind signal separation is now routinely performed 

on multidimensional data, such as images and tensors, which 

may involve no time dimension whatsoever. Since the chief 

difficulty is the problem of it’s under determination, methods 

for blind source separation generally seek to narrow the set of 

possible solutions in a way that is unlikely to exclude the 

desired solution [12]. In one approach, exemplified by 

principal and independent component analysis, one seeks 

source signals that are minimally correlated or maximally 

independent in a probabilistic or information-theoretic sense. A 

second approach, exemplified by nonnegative matrix 

factorization, is to impose structural constraints on the source 

signals [13]. These structural constraints may be derived from 

a generative model of the signal, but are more commonly 

heuristics justified by good empirical performance. A common 

theme in the second approach is to impose some kind of low-

complexity constraint on the signal, such as sparsity in some 

basis for the signal space. This approach can be particularly 

effective if one requires not the whole signal, but merely its 

most salient features. 

 

2. TECHNIQUES OF BLIND SIGNAL SEPARATION  

 There are different methods of blind signal separation: 

i) Principal components analysis 

ii)Singular value decomposition 

iii)Independent component analysis 

iv)Dependent component analysis 

v) Non-negative matrix factorization 

vi)Low-complexity coding and decoding 

vii) Stationary subspace analysis 

viii) Common spatial pattern 

 

We have elaborated few of them: 

2.1.1 Principal component analysis  

 

 Fig. 1 PCA of a multivariate Gaussian distribution 

 Principal component analysis ( PCA ) has been called one of 

the most valuable results from applied linear algebra. PCA is 
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used abundantly in all forms of analysis - from neuroscience to 

computer graphics because it is a simple, non-parametric 

method of extracting relevant information from confusing data 

sets. With minimal additional effort PCA provides a roadmap 

for how to reduce a complex data set to a lower dimension to 

reveal the sometimes hidden, simplified dynamics that often 

underlie it. Figure 1 shows PCA of a multivariate Gaussian 
distribution centred at (1,3) with a standard deviation of 3 in 

roughly the (0.878, 0.478) direction and of 1 in the orthogonal 

direction. The vectors shown are the eigenvectors of the 

covariance matrix scaled by the square root of the 

corresponding eigenvalue, and shifted so their tails are at the 

mean. 

Principal component analysis (PCA) is a statistical procedure 

that uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of 

values of linearly uncorrelated variables called principal 

components. The number of principal components is less than 

or equal to the number of original variables [1]. This 

transformation is defined in such a way that the first principal 

component has the largest possible variance (that is, accounts 

for as much of the variability in the data as possible), and each 

succeeding component in turn has the highest variance possible 

under the constraint that it is orthogonal to (i.e., uncorrelated 

with) the preceding components. Principal components are 

guaranteed to be independent if the data set is jointly 

normally distributed. PCA is sensitive to the relative 

scaling of the original variables. PCA was invented in 1901 by 

Karl Pearson,[2] as an analogue of the principal axes 

theorem in mechanics; it was later independently developed 

(and named) by Harold Hotelling in the 1930s.[3] The 

method is mostly used as a tool in exploratory data 

analysis and for making predictive models. PCA can be 

done by eigenvalue decomposition of a data covariance 

(or correlation) matrix or singular value decomposition 

of a data matrix, usually after mean centering (and 

normalizing or using Z-scores) the data matrix for each 

attribute.[4] The results of a PCA are usually discussed in 

terms of component scores, sometimes called factor scores (the 

transformed variable values corresponding to a particular data 

point), and loadings (the weight by which each standardized 

original variable should be multiplied to get the component 

score).[5] PCA is the simplest of the true eigenvector-based 

multivariate analyses. Often, its operation can be thought of as 

revealing the internal structure of the data in a way that best 

explains the variance in the data. If a multivariate dataset is 

visualized as a set of coordinates in a high-dimensional data 

space (1 axis per variable), PCA can supply the user with a 

lower-dimensional picture, a projection or "shadow" of this 

object when viewed from its  most informative viewpoint. This 

is done by using only the first few principal components so that 

the dimensionality of the transformed data is reduced. PCA is 

closely related to factor analysis. Factor analysis typically 

incorporates more domain specific assumptions about the 

underlying structure and solves eigenvectors of a slightly 

different matrix. PCA is also related to canonical 

correlation analysis (CCA). CCA defines coordinate 

systems that optimally describe the cross-covariance between 

two datasets while PCA defines a new orthogonal coordinate 

system that optimally describes variance in a single dataset 

[6],[7]. 

2.1.2 Singular Value Decomposition (SVD) 

The singular value decomposition of a matrix A is the 

factorization of A into the product of three matrices A = UDV 

T where the columns of U and V are orthonormal and the 

matrix D is diagonal with positive real entries. The SVD is 

useful in many tasks. Here we mention two examples. First, the 

rank of a matrix A can be read off from its SVD. This is useful 

when the elements of the matrix are real numbers that have 

been rounded to some finite precision. Before the entries were 

rounded the matrix may have been of low rank but the 

rounding converted the matrix to full rank [8]. The original 

rank can be determined by the number of diagonal elements of 

D not exceedingly close to zero. Second, for a square and 

invertible matrix A, the inverse of A is VD−1UT. To gain 

insight into the SVD, treat the rows of an n × d matrix A as n 

points in a d-dimensional space and consider the problem of 

finding the best k-dimensional subspace with respect to the set 

of points. Here best means minimize the sum of the squares of 

the perpendicular distances of the points to the subspace [8]. 

The problem is called the best least squares fit. In the best least 

squares fit, one is minimizing the distance to a subspace. An 

alternative problem is to find the function that best fits some 

data. Here one variable y is a function of the variables x1, x2, . 

. . ,xd and one wishes to minimize the vertical distance, i.e., 

distance in the y direction, to the subspace of the xi rather than 

minimize the perpendicular distance to the subspace being fit 

to the data. 

  

Figure 2: The projection of the point xi onto the line through 

the origin in the direction of v [8] 

Returning to the best least squares fit problem, consider 

projecting a point xi onto a line through the origin. Then 
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To minimize the sum of the squares of the distances to the line, 

one could minimize 

     (x
2
i1 + x

2
i2 + · · ·+

2
id ) minus the sum of the squares of 

the lengths of the projections of the points to the line. 
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id ) is a constant 

(independent of the line), so minimizing the sum of the squares 

of the distances is equivalent to maximizing the sum of the 

squares of the lengths of the projections onto the line. Similarly 

for best-fit subspaces, we could maximize the sum of the 
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squared lengths of the projections onto the subspace instead of 

minimizing the sum of squared distances to the subspace [8]. 

2.1.3 Independent component analysis 

Independent Component Analysis (ICA) is a statistical 

technique, perhaps the most widely used, for solving the blind 

source separation problem [10, 11]. In this section, we present 

the basic Independent Component Analysis model and show 

under which conditions its parameters can be estimated. 

 ICA model  

The general model for ICA is that the sources are generated 

through a linear basis transformation, where additive noise can 

be present. Suppose we have N statistically independent 

signals, si(t), i = 1, ...,N. We assume that the sources 

themselves cannot be directly observed and that each signal, 

si(t), is a realization of some fixed probability distribution at 

each time point t. Also, suppose we observe these signals using 

N sensors, then we obtain a set of N observation signals xi(t), i 

= 1, ...,N that are mixtures of the sources. A fundamental 

aspect of the mixing process is that the sensors must be 

spatially separated (e.g. microphones that are spatially 

distributed around a room) so that each sensor records a 

different mixture of the sources [9]. With this spatial separation 

assumption in mind, we can model the mixing process with 

matrix multiplication as follows:  

x(t) = As(t)     (1) 

where A is an unknown matrix called the mixing matrix and 

x(t), s(t) are the two vectors representing the observed signals 

and source signals respectively. Incidentally, the justification 

for the description of this signal processing technique as blind 

is that we have no information on the mixing matrix, or even 

on the sources themselves. The objective is to recover the 

original signals, si(t), from only the observed vector xi(t). We 

obtain estimates for the sources by first obtaining the “un-

mixing matrix” W, where, W = A
−1

. 

This enables an estimate, s^(t), of the independent sources to 

be obtained: 

 s^(t) =Wx(t)     (2) 

 

 

 

 

 

 

 

 

 

 

Figure 3: Blind source separation (BSS) block diagram. s(t) 

are the sources. x(t) are the recordings, ˆ s(t) are the estimated 

sources A is mixing matrix and W is un-mixing matrix [9]. 

The diagram in Figure 3 illustrates both the mixing and un-

mixing process involved in BSS. The independent sources are 

mixed by the matrix A (which is unknown in this case). We 

seek to obtain a vector y that approximates s by estimating the 

un-mixing matrix W. If the estimate of the un-mixing matrix is 

accurate, we obtain a good approximation of the sources. The 

above described ICA model is the simple model since it 

ignores all noise components and any time delay in the 

recordings [9]. 

 

2.2 Eigenvalues and Eigenvectors 

Now, consider a small example showing the characteristics of 

the eigenvectors. Some artificial data has been generated, 

which is illustrated in the Figure 4. The small dots are the 

points in the data set [18].  

 

Figure 4: Eigenvectors of the artificially created data [18] 

Sample mean and sample covariance matrix can easily be 

calculated from the data. Eigenvectors and eigenvalues can be 

calculated from the covariance matrix. The directions of 

eigenvectors are drawn in the Figure 4 as lines. The first 

eigenvector having the largest eigenvalue points to the 

direction of largest variance (right and upwards) whereas the 

second eigenvector is orthogonal to the first one (pointing to 

left and upwards). In this example the first eigenvalue 

corresponding to the first eigenvector is λ1= 0.1737 while the 

other eigenvalue is λ2= 0.0001. By comparing the values of 

eigenvalues to the total sum of eigenvalues, we can get an idea 

how much of the energy is concentrated along the particular 

eigenvector. In this case, the first eigenvector contains almost 

all the energy. The data could be well approximated with a 

one-dimensional representation.  Sometimes it is desirable to 

investigate the behavior of the system under small changes. 

Assume that this system or phenomenon is constrained to a n-

dimensional manifold and can be approximated with a linear 

manifold. Suppose one has a small change along one of the 

coordinate axes in the original coordinate system [18]. If the 

data from the phenomenon is concentrated in a subspace, we 

can project this small change δx to the approximate subspace 

built with PCA by projecting δx on all the basis vectors in the 

linear subspace by  

δy= AK δx    (3) 

Where, the matrix AK has the K first eigenvectors as rows. 

Subspace has then a dimension of K. δy represents the change 
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caused by the original small change [18]. This can be 

transformed back with a change of basis by taking a linear 

combination of the basis vectors by  

δx= AK
T
 δy    (4) 

 

Then, we get the typical change in the real-world coordinate 

system caused by a small change δx by assuming that the 

phenomenon constrains the system to have values in the 

limited subspace only.  The eigenvectors of a square matrix are 

the non-zero vectors which, after being multiplied by the 

matrix, remain proportional to the original vector, i.e. any 

vector x  that satisfies the equation: 

Ax = λx    (5)    

Where A is the matrix in question, x  is the eigenvector and 

  is the associated eigenvalue. As will become clear later on, 

eigenvectors are not unique in the sense that any eigenvector 

can be multiplied by a constant to form another eigenvector. 

For each eigenvector there is only one associated eigenvalue, 

however. If you consider a 22  matrix as a stretching, 

shearing or reflection transformation of the plane, you can see 

that the eigenvalues are the lines passing through the origin 

that are left unchanged by the transformation [18].  Note that 

square matrices of any size, not just 22  matrices, can have 

eigenvectors and eigenvalues.  In order to find the eigenvectors 

of a matrix we must start by finding the eigenvalues. To do this 

we take everything over to the LHS of the equation: 

Ax – λx = 0                               (6) 

Then we pull the vector x  outside of a set of brackets: 

( A – λI )x = 0                                           (7) 

The only way this can be solved is if IA   does not have an 

inverse
1
, therefore we find values of   such that the 

determinant of IA   is zero: 

|A - λI| = 0    (8) 

Once we have a set of eigenvalues we can substitute them back 

into the original equation to find the eigenvectors [18]. 

2.3 Gram-Schmidt Orthogonalization: 

To replace the linearly independent vectors  one 

by one with mutually orthogonal vectors that 

span the same subspace, begin with  

     u1 = v1                                                                                            (9) 
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3. Related Work 

Chen Meng et. Al. [12] describes that Blind equalization and 

signal separation are two well-established signal processing 

problems. In this paper, the author presents a quadratic 

programming algorithm for fast blind equalization and signal 

separation. By introducing a special non-mean-square error 

(MSE) objective function. The author reformulates 

fractionally spaced blind equalization into an equivalent 

quadratic programming problem. Based on a clear geometric 

interpretation and a formal proof, the author shows that a 

perfect equalization solution is obtained at every local 

optimum of the quadratic program. Because blind source 

separation is, by nature and mathematically, a closely related 

problem, the authors also generalize the algorithm for blind 

signal separation. The authors show that by enforcing source 

orthogonalization through successive processing, the 

quadratic programming approach can be applied effectively. 

Moreover, the quadratic program is easily extendible to 

incorporate additional practical conditions, such as jamming 

suppression constraints. The author also provides evidence of 

good performance through computer simulations. 

Qiao Li-yan et. Al. [13] presents a novel framework for 

separating and reconstructing multichannel speech sources 

from compressively sensed linear mixtures simultaneously. 

The conventional approaches for blind speech separation are 

almost based on the Nyquist sampling theory. The author 

proposed an approach which uses the multichannel 

compressive sensing theory for blind speech separation. The 

linear programming and gradient-based methods are used to 

separate the sources. Compared with the conventional blind 

speech separation, the proposed approach can reduce the 

requirements of sampling speed and operating rate of the 

devices. Moreover, our approach has lower computational 

complexity. The main contribution of this paper lies in 

proposing a novel procedure to estimate the sources from the 

measurements without reconstructing the mixed signals. 

Simulation results demonstrate the proposed algorithm can 

separate multichannel speech sources successfully. 

 

Jérémy Rapin et. Al. [14] describes that Non-negative blind 

source separation (BSS) has raised interest in various fields 

of research, as testified by the wide literature on the topic of 

non-negative matrix factorization (NMF). In this context, it is 

fundamental that the sources to be estimated present some 

diversity in order to be efficiently retrieved. Sparsity is 

known to enhance such contrast between the sources while 

producing very robust approaches, especially to noise. In this 

paper, the author introduces a new algorithm in order to 

tackle the blind separation of non-negative sparse sources 

from noisy measurements. The author first shows that 

sparsity and non-negativity constraints have to be carefully 

applied on the sought-after solution. In fact, improperly 

constrained solutions are unlikely to be stable and are 

therefore sub-optimal. The proposed algorithm, named 

nGMCA (non-negative Generalized Morphological 

Component Analysis), makes use of proximal calculus 

techniques to provide properly constrained solutions. The 

performance of nGMCA compared to other state-of-the-art 

algorithms is demonstrated by numerical experiments 

encompassing a wide variety of settings, with negligible 

nv,...,v,v 21

n21 u,...,u,u
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parameter tuning. In particular, nGMCA is shown to provide 

robustness to noise and performs well on synthetic mixtures 

of real NMR spectra.  

 

Frédéric Krüger et. Al [15] states that Electrical distribution 

companies struggle to find precise energy demand for their 

networks. They have at their disposal statistical tools such as 

power load profiles, which are however usually not precise 

enough and do not take into account factors such as the 

presence of electrical heating devices or the type of housing 

of the end users. In this paper, author shows how the 

determination of accurate load profiles can be considered as a 

noisy blind source separation problem solved by an 

evolutionary algorithm. The power load profiles obtained 

demonstrate considerable improvement in the load curve 

forecasts of 20kV/400V substations. 

 

Jie Yang et. Al. [16] provides a convex model based subspace 

projection method with enhanced functionality, which can be 

used for Underdetermined Blind Source Separation (UBSS). 

The model takes into account both projection and size of the 

signal’s subspace, without estimating the source number at 

Time- Frequency (TF) point. Simulation results show that it 

overcomes the shortage of conventional subspace method and 

achieves high separation performance. The proposed method 

can be employed as a preprocessing technology for audio 

separation and enhancement, as well as biomedical images, etc. 

 

Gilles Chabriel et. Al. [17] Matrix decompositions such as the 

eigenvalue decomposition (EVD) or the singular value 

decomposition (SVD) have a long history in signal processing. 

They have been used in spectral analysis, signal/noise subspace 

estimation, principal component analysis (PCA), 

dimensionality reduction, and whitening in independent 

component analysis (ICA). Very often, the matrix under 

consideration is the covariance matrix of some observation 

signals. However, many other kinds of matrices can be 

encountered in signal processing problems, such as time-

lagged covariance matrices, quadratic spatial time-frequency 

matrices, and matrices of higher-order statistics. In concert 

with this diversity, the joint diagonalization (JD) or 

approximate JD (AJD) of a set of matrices has been recently 

recognized to be instrumental in signal processing, mainly 

because of its importance in practical signal processing 

problems such as source separation, blind beamforming, image 

denoising, blind channel identification for multiple-input, 

multiple-output (MIMO) telecommunication system, Doppler-

shifted echo extraction in radar, and ICA. Perhaps one of the 

first such algorithms is the joint approximate diagonalization of 

eigenmatrices (JADE) algorithm. In this algorithm, the 

matrices under consideration are Hermitian and the considered 

joint diagonalizer is a unitary matrix. More recently, 

generalizations and/or new decompositions were found to be of 

considerable interest. They concern new sets of matrices, a 

nonunitary joint diagonalizer, and new decompositions.  

4.  CONCLUSION AND FUTURE WORK  

 It can be concluded that the existing method have done much 

efficient work in the field of source signal separation in a 

MIMO system. But, a lot of scope is there for improvement in 

terms of number of input tuning parameters, time for 

computation, quality of extracted signals. Achieving good 

separation quality from the existing methods, is highly 

dependent on tuning its many parameters. This makes the use 

of the above algorithms problematic in a real-world system as 

the changing environment mean its parameters would need to 

be continuously updated in a sophisticated manner. Also, 

training of input data is required for quality separation 

according to existing methods which makes the separation 

process much more complex and time consuming So, there is a 

need of an algorithm which does not require any training of 

data with lesser number of tuning parameters. 
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