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Abstract— Users may search for different type of things from anywhere. But Search results depend on the user entered 

query which has to satisfy their searched properties that is stored in the spatial database. Due to rapid growth of users it 

becomes essential to optimize search results based on nearest neighbour property in spatial databases. Conventional spatial 

queries, such as range search and nearest neighbour retrieval, involve only geometric properties of objects which satisfies 

condition on geometric objects. Nowadays many modern applications aim to find objects satisfying both a spatial condition 

and a condition on their associated texts which is known as Spatial keyword search. For example, instead of considering all 

the hotels, a nearest neighbor query would instead ask for the hotel that is closest to among those who provide services such 

as pool, internet at the same time. For this type of query a variant of inverted index is used that is effective for 

multidimensional points and comes with an R-tree which is built on every inverted list, and uses the algorithm of minimum 

bounding method that can answer the nearest neighbor queries with keywords in real time.  

Keywords – Spatial Database, nearest neighbour search, R-tree, Keyword search, spatial queries. 

 

1. INTRODUCTION 

              Nearest neighbor search (NNS) also known as 

proximity search, similarity search or closest point search, is an 

optimization problem for finding closest points or similar 

points. Closeness is typically expressed in terms of 

dissimilarity function. The less similar are the objects, the 

larger are the function values.  

 Various solutions to the NNS problem have been 

proposed. The quality and usefulness of the algorithms are 

determined by the time complexity of queries as well as the 

space complexity of any search data structures that must be 

maintained. The informal observation usually referred to as 

the curse of dimensionality states that there is no general-

purpose exact solution for NNS in high-dimensional Euclidean 

space using polynomial preprocessing and poly-logarithmic 

search time. Some of the solutions to the NNS problems are 

mentioned below: 

 Linear Search 

 Space Partitioning 

 Locality sensitive hashing 

 NNS in spaces with small intrinsic dimensions 

 Projected radial search 

 Compression / Clustering based search and more 

 

 A spatial database or geodatabase is a database that is 

optimized to store and query data that represents objects 

defined in a geometric space. Most spatial databases allow 

representing simple geometric objects such as points, lines and 

polygons. Some spatial databases handle more complex 

structures such as 3D objects, topological coverage, linear 

networks. While typical databases are designed to manage 

various numerics and character types of data, additional 

functionality needs to be added for databases to process spatial 

data types efficiently. These are typically 

called geometry or feature [1]. 

Features of Spatial Database: 

Database systems use indexes to quickly look up values 
and the way that most databases index data is not 
optimal for spatial queries. Instead, spatial databases 
use a spatial index to speed up database operations. 

 In addition to typical SQL queries such as SELECT 

statements, spatial databases can perform a wide variety of 

spatial operations. The following operations and many more 

are specified by the Open Geospatial Consortium standard [1]: 

 Spatial Measurements: Computes line length, polygon 

area, the distance between geometries, etc. 

 Spatial Functions: Modify existing features to create 

new ones, for example by providing a buffer around 

them, intersecting features, etc. 

 Spatial Predicates: Allows true/false queries about 

spatial relationships between geometries. Examples 

include "do two polygons overlap" or 'is there a 

residence located within a mile of the area we are 

planning to build the landfill?'  

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Spatial_query
https://en.wikipedia.org/wiki/Spatial_index
https://en.wikipedia.org/wiki/Open_Geospatial_Consortium
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 Geometry Constructors: Creates new geometries, 

usually by specifying the vertices (points or nodes) 

which define the shape. 

 Observer Functions: Queries which return specific 

information about a feature such as the location of the 

center of a circle. 

 The importance of spatial databases is reflected by the 

convenience of modeling entities of reality in a geometric 

manner. For example, locations of restaurants, hotels, hospitals 

and so on are often represented as points in a map, while larger 

extents such as parks, lakes, and landscapes often as a 

combination of rectangles. Many functionalities of a spatial 

database are useful in various ways in specific contexts. For 

instance, in a geography information system, range search can 

be deployed to find all hospital in a certain area, while nearest 

neighbor retrieval can discover the hospital closest to a given 

address. Today, the widespread use of search engines has made 

it realistic to write spatial queries in a brand-new way. 

Conservative spatial queries, such as range search and nearest 

neighbor retrieval, involve only conditions on objects’ 

numerical properties. We have seen some modern applications 

that call for the ability to select objects based on both of their 

geometric coordinates and their associated texts. The major 

drawback of these straightforward approaches is that they will 

fail to provide real time answers on difficult inputs. A typical 

example is that the real nearest neighbor lies quite far away 

from the query point, while all the closer neighbors are missing 

at least one of the query keywords. 

 The spatial database is being referred to the database 

which contains geographical information like coordinate of any 

location or point. The higher areas are shown by rectangles and 

planes etc. Finding the particular location in such database 

from particular point is difficult task. The location search along 

with keyword is again a tedious job. If you want to search a 

restaurant which serves bread, nuggets and brandy from such 

database from your point will need to write spatial queries. 

Such queries need proper indexing otherwise it will drastically 

affect the performance of searching. So the traditional method 

such as IR tree carries same drawback which we are trying to 

sort out at some extent.  

 

 The main objective of our application is to derive the 

best searching scheme for spatial database. As spatial database 

consists of multidimensional points, rectangles, planes etc, It 

becomes very difficult to find the best solution to our search 

query. 

 In this paper, we are going to design a system which 

will help to find the nearest neighbor location of a query with 

the help of R-tree and minimum bounding method where 

spatial database consists of large spatial objects, and to find the 

correct result it will take more time. So to obtain the search 

result in less time the proposed system will use R-tree indexing 

structure. By using indexing structure the time required for 

searching will be less. And also the accuracy of the system will 

be our priority and for that reason we use minimum bounding 

method with R-tree. 

 

2. RELATED WORK and LITERATURE SURVEY 

 Nearest neighbour search (NNS), also known as 

closest point search, similarity search. It is an optimization 

problem for finding closest (or most similar) points. We can 

search closest point by giving keywords as input; it can be 

spatial or textual.    

 Yufie Tao and Cheng Sheng [2], developed a new 

access method called the spatial inverted index that extends the 

conventional inverted index to cope with multidimensional 

data, and comes with algorithms that can answer nearest 

neighbor queries with keywords in real time. we design a 

variant of inverted index that is optimized for multidimensional 

points, and is thus named the spatial inverted index (SI-index). 

This access method successfully incorporates point coordinates 

into a conventional inverted index with small extra space, 

owing to a delicate compact storage scheme. Meanwhile, an SI-

index preserves the spatial locality of data points, and comes 

with an R-tree built on every inverted list at little space 

overhead. 

 Cao et al. [3], proposed collective spatial keyword 

querying, they present the new problem of retrieving a group of 

spatial objects, each associated with a set of keywords. We 

develop approximation algorithms with provable 

approximation bounds and exact algorithms to solve the two 

problems. 

 Lu et al. [4], combined the notion of keyword search 

with reverse nearest neighbor queries. propose a hybrid index 

tree called IUR-tree (Intersection-Union R-Tree) that 

effectively combines location proximity with textual similarity. 

Based on the IUR-tree, we design a branch-and-bound search 

algorithm. 

 Cong et al.[5], proposed the concept of prestige-based 

spatial keyword search. The central idea is to evaluate the 

similarity of an object p to a query by taking also into account 

the objects in the neighborhood of p. 

 G. Cong, C.S. Jensen, and D. Wu [6] proposed a 

approach that computes the relevance between the documents 

of an object p and a query q. This relevance score is then 

integrated with the Euclidean distance between p and q to 

calculate an overall similarity of p to q. The few objects with 

the highest similarity are returned. In this way, an object may 

still be in the query result, even though its document does not 

contain all the query keywords. 

 I.D Felipe, V. Hristidis and N. Rishe [7], object texts 

are utilized in evaluating a boolean predicate, i.e., if any query 

keyword is missing in an object’s document, it must not be 

returned. Neither approach subsumes the other, and both make 

sense in different applications. As an application in our favor, 

consider the scenario where we want to find a close restaurant 

serving “steak, spaghetti and brandy”, and do not accept any 

restaurant that do not serve any of these three items. In this 
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case, a restaurant’s document either fully satisfies our 

requirement, or does not satisfy at all. 

 Y.-Y. Chen, T. Suel, and A. Markowetz [8], have 

studied efficient query processing in geographic web search 

engines. They discussed a general framework for ranking 

search results based on a combination of textual and spatial 

criteria, and proposed several algorithms for efficiently 

executing ranked queries on very large collections. They 

integrated their algorithms into an existing high-performance 

search engine query processor and evaluated them on a large 

data set and realistic geographic queries. Their results show 

that in many cases geographic query processing can be 

performed at about the same level of efficiency as text-only 

queries. 

 V. Hristidis and Y. Papakonstantinou [9], presented 

DISCOVER, a system that performs keyword search in 

relational databases. It proceeds in three step. First it generates 

the smallest set of candidate networks that guarantee that all 

MTJNT’s will be produced. Then the greedy algorithm creates 

a near-optimal execution plan to evaluate the set of candidate 

networks. Finally, the execution plan is executed by the 

DBMS. 

3. PROPOSED METHODOLOGY  

We are trying to create an application in which we have to 

import spatial datasets into relational database for processing. 

Our system is based on R-tree and performs searching 

operations on it. In this paper, we are going to discuss about R-

tree and various operations perform on it. The main purpose of 

this application is to find the nearest location of the input 

query. 

 Spatial data, also known as geospatial data, is 

information about a physical object that can be represented by 

numerical values in a geographic coordinate system. Spatial 

data represents the location, size and shape of an object on 

planet such as a building, lake, mountain or township. Spatial 

data may also include attributes that provide more information 

about the entity that is being represented. After gathering 

dataset we create an indexes on those datasets. 

 

R-Tree: R-trees are tree data structures used for spatial 

access methods, i.e., for indexing multi-dimensional 

information such as geographical coordinates, rectangles or 

polygons. 

 

The key idea of the data structure is to group nearby 

objects and represent them with their minimum bounding 

rectangle in the next higher level of the tree; the "R" in R-tree 

is for rectangle. Since all objects lie within this bounding 

rectangle, a query that does not intersect the bounding rectangle 

also cannot intersect any of the contained objects. At the leaf 

level, each rectangle describes a single object; at higher levels 

the aggregation of an increasing number of objects. 

 

Figure 1: Example of R-tree 

 

Similar to the B-tree, the R-tree is also a balanced search 

tree organizes the data in pages, and is designed for storage on 

disk. Each page can contain a maximum number of entries, 

often denoted as . It also guarantees a minimum fill (except 

for the root node), however best performance has been 

experienced with a minimum fill of 30%–40% of the maximum 

number of entries. The reason for this is the more complex 

balancing required for spatial data as opposed to linear data 

stored in B-trees. 

 

The key difficulty of R-trees is to build an efficient tree 

that on one hand is balanced (so the leaf nodes are at the same 

height) on the other hand the rectangles do not cover too much 

empty space and do not overlap too much (so that during 

search, fewer sub-trees need to be processed). For example, the 

original idea for inserting elements to obtain an efficient tree is 

to always insert into the sub-tree that requires least enlargement 

of its bounding box. Once that page is full, the data is split into 

two sets that should cover the minimal area each. Most of the 

research and improvements for R-trees aims at improving the 

way the tree is built and can be grouped into two objectives: 

building an efficient tree from scratch (known as bulk-loading) 

and performing changes on an existing tree (insertion and 

deletion). 

 

R-trees do not guarantee good worst-case performance, but 

generally perform well with real-world data.  While more of 

theoretical interest, the (bulk-loaded) Priority R-tree variant of 

the R-tree is worst-case optimal, but due to the increased 

complexity, has not received much attention in practical 

applications so far. 

 

When data is organized in an R-tree, the k nearest 

neighbors of all points can efficiently be computed using a 

spatial join. This is beneficial for many algorithms based on the 

k nearest neighbors, for example the Local Outlier Factor. De-

Li-Clu, Density-Link-Clustering is a cluster analysis algorithm 

http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Spatial_index
http://en.wikipedia.org/wiki/Spatial_index
http://en.wikipedia.org/wiki/Geographic_coordinate_system
http://en.wikipedia.org/wiki/Rectangle
http://en.wikipedia.org/wiki/Polygon
http://en.wikipedia.org/wiki/Minimum_bounding_rectangle
http://en.wikipedia.org/wiki/Minimum_bounding_rectangle
http://en.wikipedia.org/wiki/File:R-tree.svg
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that uses the R-tree structure for a similar kind of spatial join to 

efficiently compute an OPTICS clustering. 

 

Operations on R-tree: 

When dynamic structure R-Tree is designed, you can 

efficiently complete operations on spatial database, such as 

search, insert, delete, node splitting, updates and other 

operations. The application will work in the way as shown in 

below figure. 

 

 

Figure 2: Flow Diagram of the System 

A) Search: 

Search algorithm accomplishes the following task, given 

an R-Tree whose root node is T, find all index records whose 

rectangles overlap a search rectangle S. We denote an entry in a 

node as E(EI, EP), where EI represents the smallest rectangle 

bounding the sub-tree or the spatial object, EP is the pointer to 

the sub-tree or the spatial object. 

 

SearchSubTree(t, s)  

1. If t is not a leaf  

2.then for each entry E in t do  

3. if EI overlaps S  

4. then SearchSubTree(EP, s)  

5. else SearchLeaf(T, s) 

SearchLeaf(t, s)  

1. for each entry E in t  

2. do if EI overlaps s  

3. then output E 

 

Searching an R-Tree is unlike searching an B-Tree, All 

internal nodes whose minimal bounding rectangles intersect 

with the search rectangle may need to be visited during a 

search. 

We can apply the searching of an R-tree to find objects 

that overlap a search object, say o, by the following steps. 

SearchObj(t, o)  

1. s←bounding box of the search object o  

2. SearchSubTree(t,s)  

 

and revise the above SearchLeaf(t,s) as follows:  

SearchLeaf(t,s)  

1. for each entry E in t  

2. do if EI = s  

3. then if EP = o  

4.then output E 

 

B) Insertion: 

 Like insertion in B-Tree, inserting new data tuple into 

R-Tree may cause splitting nodes and the splits propagate up 

the tree. Furthermore, an insertion of a new rectangle can 

increase the overlap of the nodes. Choosing which leaf to insert 

a new rectangle and how to split nodes during re-balancing are 

very critical to the performance of R-Tree 

  

 Algorithm Insert: Insert a new index entry E into an 

R-Tree T. 

 

Insert(E, t) 

1. L←ChooseLeaf(E, t) > select a leaf node L where to 

place E 

2. If L need not split 

3. then install E 

4. else SplitNode(L) 

5. AdjustTree(L) 

ChooseLeaf(E,t) 

1. N←t 

2. while N is not a leaf 

3.do choose the entry F in N whose rectangle FI needs 

least enlargement to include EI 

4.N←FP 

5. return N 

 

C) Deletion: 

Algorithm Delete: Remove an index record E from an R-

Tree 

Delete(E, t) 

1. L←FindLeaf(E, t) 

2. If L is null 

3. Then return 

4. Remove E from L 

5. CondenseTree(L) 

6. If the root node has only one child. 

7. then make the child the new root. 

FindLeaf(E, t) 

1. if t is not a leaf 

2. then for each entry F in t 

3. do if FI overlaps EI 

4. then FindLeaf(E, FP) 

5. else for each entry F in T 

6. do if FI = EI & FP=EP 

7. then return T 

 

Analyzing Spatial Queries 

 Next, after creating the indexes we will analyze the 

spatial query, the query will be searched. The latitude longitude 

and keyword of the location will be entered and in the output 

nearest location of the query will be displayed. The minimum 

bounding method (MBM) performs a single query, but uses the 

minimum bounding rectangle to prune the search space. 

Specifically, starting from the root of the R-tree for dataset, 

MBM visits only nodes that may contain candidate points. 

4. CONCLUSION 

 The proposed system will use the indexing structure R 

tree. The system will use the group nearest neighbor technique 

for spatial queries, which uses minimum bounding method. 
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This method will use the minimum bounding rectangle to prune 

the search space.MBR are frequently used as an indication of 

the general position of a geographic feature or dataset for either 

display, first approximation spatial query or spatial indexing 

purpose. The system is working well as it shows the nearest 

location based on query without taking too much time.  

 

                    REFERENCES 

[1] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, “Processing Spatial- 
Keyword (SK) Queries in Geographic Information Retrieval (GIR) 
Systems,” Proc. Scientific and Statistical Database Management 
(SSDBM), 2007.  

[2] Yufei Tao and Cheng Sheng, “Fast Nearest Neighbor Search with 
Keywords”, IEEE transactions on knowledge and data engineering, VOL. 
26, NO. 4, APRIL 2014.  

[3] X. Cao, L. Chen, G. Cong, C.S. Jensen, Q. Qu, A. Skovsgaard, D. Wu, 
and M.L. Yiu, “Spatial Keyword Querying,” Proc. 31st Int’l Conf. 
Conceptual Modeling (ER), pp. 16-29, 2012. 

[4] J. Lu, Y. Lu, and G. Cong, “Reverse Spatial and Textual k Nearest 
Neighbor Search,” Proc. ACM SIGMOD Int’l Conf. Management of 
Data, pp. 349-360, 2011 

[5] X. Cao, G. Cong, C.S. Jensen, and B.C. Ooi, “Collective Spatial Keyword 
Querying,” Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 
373-384, 2011. 

[6] G. Cong, C.S. Jensen, and D. Wu, “Efficient Retrieval of the Top-k Most 
Relevant Spatial Web Objects,” PVLDB, vol. 2, no. 1, pp. 337- 348, 
2009. 

[7] I.D. Felipe, V. Hristidis, and N. Rishe, “Keyword Search on Spatial 
Databases,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 656-665, 2008. 

[8] Y.-Y. Chen, T. Suel, and A. Markowetz, “Efficient Query Processing in 
Geographic Web Search Engines,” Proc. ACM SIGMOD Int’l Conf. 
Management of Data, pp. 277-288, 2006.  

[9] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword Search in 
Relational Databases,” Proc. Very Large Data Bases (VLDB), pp. 670-
681, 2002. 

[10] T.Miranda Lakshmi ,  A.Martin ,  R.Mumtaj Begum,  Dr.V.Prasanna 
Venkatesan, “An Analysis on Performance of Decision Tree Algorithms 
using Student’s Qualitative Data”, I.J.Modern Education and Computer 
Science, 2013, 5, 18-27 Published Online June 2013 in MECS  

 


