
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 5 May 2016, Page No. 16584-16588

Sphurti S. Sao, IJECS Volume 05 Issue 5 May 2016 Page No.16584-16588 Page 18584

Nearest Neighbor Browsing and Search with Keywords in Spatial Databases
Sphurti S. Sao

1
, Dr. Rahila Sheikh

2

1
M. Tech Student IV Sem, Dept of CSE, RCERT Chandrapur,

MH, India RCERT Chandrapur, MH, India

2
Assistant Professor, Dept of CSE, RCERT Chandrapur,

MH, India RCERT Chandrapur, MH, India

Abstract— Users may search for different type of things from anywhere. But Search results depend on the user entered

query which has to satisfy their searched properties that is stored in the spatial database. Due to rapid growth of users it

becomes essential to optimize search results based on nearest neighbour property in spatial databases. Conventional spatial

queries, such as range search and nearest neighbour retrieval, involve only geometric properties of objects which satisfies

condition on geometric objects. Nowadays many modern applications aim to find objects satisfying both a spatial condition

and a condition on their associated texts which is known as Spatial keyword search. For example, instead of considering all

the hotels, a nearest neighbor query would instead ask for the hotel that is closest to among those who provide services such

as pool, internet at the same time. For this type of query a variant of inverted index is used that is effective for

multidimensional points and comes with an R-tree which is built on every inverted list, and uses the algorithm of minimum

bounding method that can answer the nearest neighbor queries with keywords in real time.

Keywords – Spatial Database, nearest neighbour search, R-tree, Keyword search, spatial queries.

1. INTRODUCTION

 Nearest neighbor search (NNS) also known as

proximity search, similarity search or closest point search, is an

optimization problem for finding closest points or similar

points. Closeness is typically expressed in terms of

dissimilarity function. The less similar are the objects, the

larger are the function values.

 Various solutions to the NNS problem have been

proposed. The quality and usefulness of the algorithms are

determined by the time complexity of queries as well as the

space complexity of any search data structures that must be

maintained. The informal observation usually referred to as

the curse of dimensionality states that there is no general-

purpose exact solution for NNS in high-dimensional Euclidean

space using polynomial preprocessing and poly-logarithmic

search time. Some of the solutions to the NNS problems are

mentioned below:

 Linear Search

 Space Partitioning

 Locality sensitive hashing

 NNS in spaces with small intrinsic dimensions

 Projected radial search

 Compression / Clustering based search and more

 A spatial database or geodatabase is a database that is

optimized to store and query data that represents objects

defined in a geometric space. Most spatial databases allow

representing simple geometric objects such as points, lines and

polygons. Some spatial databases handle more complex

structures such as 3D objects, topological coverage, linear

networks. While typical databases are designed to manage

various numerics and character types of data, additional

functionality needs to be added for databases to process spatial

data types efficiently. These are typically

called geometry or feature [1].

Features of Spatial Database:

Database systems use indexes to quickly look up values
and the way that most databases index data is not
optimal for spatial queries. Instead, spatial databases
use a spatial index to speed up database operations.

 In addition to typical SQL queries such as SELECT

statements, spatial databases can perform a wide variety of

spatial operations. The following operations and many more

are specified by the Open Geospatial Consortium standard [1]:

 Spatial Measurements: Computes line length, polygon

area, the distance between geometries, etc.

 Spatial Functions: Modify existing features to create

new ones, for example by providing a buffer around

them, intersecting features, etc.

 Spatial Predicates: Allows true/false queries about

spatial relationships between geometries. Examples

include "do two polygons overlap" or 'is there a

residence located within a mile of the area we are

planning to build the landfill?'

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Spatial_query
https://en.wikipedia.org/wiki/Spatial_index
https://en.wikipedia.org/wiki/Open_Geospatial_Consortium

DOI: 10.18535/ijecs/v5i5.42

Sphurti S. Sao, IJECS Volume 05 Issue 5 May 2016 Page No.16584-16588 Page 18585

 Geometry Constructors: Creates new geometries,

usually by specifying the vertices (points or nodes)

which define the shape.

 Observer Functions: Queries which return specific

information about a feature such as the location of the

center of a circle.

 The importance of spatial databases is reflected by the

convenience of modeling entities of reality in a geometric

manner. For example, locations of restaurants, hotels, hospitals

and so on are often represented as points in a map, while larger

extents such as parks, lakes, and landscapes often as a

combination of rectangles. Many functionalities of a spatial

database are useful in various ways in specific contexts. For

instance, in a geography information system, range search can

be deployed to find all hospital in a certain area, while nearest

neighbor retrieval can discover the hospital closest to a given

address. Today, the widespread use of search engines has made

it realistic to write spatial queries in a brand-new way.

Conservative spatial queries, such as range search and nearest

neighbor retrieval, involve only conditions on objects’

numerical properties. We have seen some modern applications

that call for the ability to select objects based on both of their

geometric coordinates and their associated texts. The major

drawback of these straightforward approaches is that they will

fail to provide real time answers on difficult inputs. A typical

example is that the real nearest neighbor lies quite far away

from the query point, while all the closer neighbors are missing

at least one of the query keywords.

 The spatial database is being referred to the database

which contains geographical information like coordinate of any

location or point. The higher areas are shown by rectangles and

planes etc. Finding the particular location in such database

from particular point is difficult task. The location search along

with keyword is again a tedious job. If you want to search a

restaurant which serves bread, nuggets and brandy from such

database from your point will need to write spatial queries.

Such queries need proper indexing otherwise it will drastically

affect the performance of searching. So the traditional method

such as IR tree carries same drawback which we are trying to

sort out at some extent.

 The main objective of our application is to derive the

best searching scheme for spatial database. As spatial database

consists of multidimensional points, rectangles, planes etc, It

becomes very difficult to find the best solution to our search

query.

 In this paper, we are going to design a system which

will help to find the nearest neighbor location of a query with

the help of R-tree and minimum bounding method where

spatial database consists of large spatial objects, and to find the

correct result it will take more time. So to obtain the search

result in less time the proposed system will use R-tree indexing

structure. By using indexing structure the time required for

searching will be less. And also the accuracy of the system will

be our priority and for that reason we use minimum bounding

method with R-tree.

2. RELATED WORK and LITERATURE SURVEY

 Nearest neighbour search (NNS), also known as

closest point search, similarity search. It is an optimization

problem for finding closest (or most similar) points. We can

search closest point by giving keywords as input; it can be

spatial or textual.

 Yufie Tao and Cheng Sheng [2], developed a new

access method called the spatial inverted index that extends the

conventional inverted index to cope with multidimensional

data, and comes with algorithms that can answer nearest

neighbor queries with keywords in real time. we design a

variant of inverted index that is optimized for multidimensional

points, and is thus named the spatial inverted index (SI-index).

This access method successfully incorporates point coordinates

into a conventional inverted index with small extra space,

owing to a delicate compact storage scheme. Meanwhile, an SI-

index preserves the spatial locality of data points, and comes

with an R-tree built on every inverted list at little space

overhead.

 Cao et al. [3], proposed collective spatial keyword

querying, they present the new problem of retrieving a group of

spatial objects, each associated with a set of keywords. We

develop approximation algorithms with provable

approximation bounds and exact algorithms to solve the two

problems.

 Lu et al. [4], combined the notion of keyword search

with reverse nearest neighbor queries. propose a hybrid index

tree called IUR-tree (Intersection-Union R-Tree) that

effectively combines location proximity with textual similarity.

Based on the IUR-tree, we design a branch-and-bound search

algorithm.

 Cong et al.[5], proposed the concept of prestige-based

spatial keyword search. The central idea is to evaluate the

similarity of an object p to a query by taking also into account

the objects in the neighborhood of p.

 G. Cong, C.S. Jensen, and D. Wu [6] proposed a

approach that computes the relevance between the documents

of an object p and a query q. This relevance score is then

integrated with the Euclidean distance between p and q to

calculate an overall similarity of p to q. The few objects with

the highest similarity are returned. In this way, an object may

still be in the query result, even though its document does not

contain all the query keywords.

 I.D Felipe, V. Hristidis and N. Rishe [7], object texts

are utilized in evaluating a boolean predicate, i.e., if any query

keyword is missing in an object’s document, it must not be

returned. Neither approach subsumes the other, and both make

sense in different applications. As an application in our favor,

consider the scenario where we want to find a close restaurant

serving “steak, spaghetti and brandy”, and do not accept any

restaurant that do not serve any of these three items. In this

DOI: 10.18535/ijecs/v5i5.42

Sphurti S. Sao, IJECS Volume 05 Issue 5 May 2016 Page No.16584-16588 Page 18586

case, a restaurant’s document either fully satisfies our

requirement, or does not satisfy at all.

 Y.-Y. Chen, T. Suel, and A. Markowetz [8], have

studied efficient query processing in geographic web search

engines. They discussed a general framework for ranking

search results based on a combination of textual and spatial

criteria, and proposed several algorithms for efficiently

executing ranked queries on very large collections. They

integrated their algorithms into an existing high-performance

search engine query processor and evaluated them on a large

data set and realistic geographic queries. Their results show

that in many cases geographic query processing can be

performed at about the same level of efficiency as text-only

queries.

 V. Hristidis and Y. Papakonstantinou [9], presented

DISCOVER, a system that performs keyword search in

relational databases. It proceeds in three step. First it generates

the smallest set of candidate networks that guarantee that all

MTJNT’s will be produced. Then the greedy algorithm creates

a near-optimal execution plan to evaluate the set of candidate

networks. Finally, the execution plan is executed by the

DBMS.

3. PROPOSED METHODOLOGY

We are trying to create an application in which we have to

import spatial datasets into relational database for processing.

Our system is based on R-tree and performs searching

operations on it. In this paper, we are going to discuss about R-

tree and various operations perform on it. The main purpose of

this application is to find the nearest location of the input

query.

 Spatial data, also known as geospatial data, is

information about a physical object that can be represented by

numerical values in a geographic coordinate system. Spatial

data represents the location, size and shape of an object on

planet such as a building, lake, mountain or township. Spatial

data may also include attributes that provide more information

about the entity that is being represented. After gathering

dataset we create an indexes on those datasets.

R-Tree: R-trees are tree data structures used for spatial

access methods, i.e., for indexing multi-dimensional

information such as geographical coordinates, rectangles or

polygons.

The key idea of the data structure is to group nearby

objects and represent them with their minimum bounding

rectangle in the next higher level of the tree; the "R" in R-tree

is for rectangle. Since all objects lie within this bounding

rectangle, a query that does not intersect the bounding rectangle

also cannot intersect any of the contained objects. At the leaf

level, each rectangle describes a single object; at higher levels

the aggregation of an increasing number of objects.

Figure 1: Example of R-tree

Similar to the B-tree, the R-tree is also a balanced search

tree organizes the data in pages, and is designed for storage on

disk. Each page can contain a maximum number of entries,

often denoted as . It also guarantees a minimum fill (except

for the root node), however best performance has been

experienced with a minimum fill of 30%–40% of the maximum

number of entries. The reason for this is the more complex

balancing required for spatial data as opposed to linear data

stored in B-trees.

The key difficulty of R-trees is to build an efficient tree

that on one hand is balanced (so the leaf nodes are at the same

height) on the other hand the rectangles do not cover too much

empty space and do not overlap too much (so that during

search, fewer sub-trees need to be processed). For example, the

original idea for inserting elements to obtain an efficient tree is

to always insert into the sub-tree that requires least enlargement

of its bounding box. Once that page is full, the data is split into

two sets that should cover the minimal area each. Most of the

research and improvements for R-trees aims at improving the

way the tree is built and can be grouped into two objectives:

building an efficient tree from scratch (known as bulk-loading)

and performing changes on an existing tree (insertion and

deletion).

R-trees do not guarantee good worst-case performance, but

generally perform well with real-world data. While more of

theoretical interest, the (bulk-loaded) Priority R-tree variant of

the R-tree is worst-case optimal, but due to the increased

complexity, has not received much attention in practical

applications so far.

When data is organized in an R-tree, the k nearest

neighbors of all points can efficiently be computed using a

spatial join. This is beneficial for many algorithms based on the

k nearest neighbors, for example the Local Outlier Factor. De-

Li-Clu, Density-Link-Clustering is a cluster analysis algorithm

http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Spatial_index
http://en.wikipedia.org/wiki/Spatial_index
http://en.wikipedia.org/wiki/Geographic_coordinate_system
http://en.wikipedia.org/wiki/Rectangle
http://en.wikipedia.org/wiki/Polygon
http://en.wikipedia.org/wiki/Minimum_bounding_rectangle
http://en.wikipedia.org/wiki/Minimum_bounding_rectangle
http://en.wikipedia.org/wiki/File:R-tree.svg

DOI: 10.18535/ijecs/v5i5.42

Sphurti S. Sao, IJECS Volume 05 Issue 5 May 2016 Page No.16584-16588 Page 18587

that uses the R-tree structure for a similar kind of spatial join to

efficiently compute an OPTICS clustering.

Operations on R-tree:

When dynamic structure R-Tree is designed, you can

efficiently complete operations on spatial database, such as

search, insert, delete, node splitting, updates and other

operations. The application will work in the way as shown in

below figure.

Figure 2: Flow Diagram of the System

A) Search:

Search algorithm accomplishes the following task, given

an R-Tree whose root node is T, find all index records whose

rectangles overlap a search rectangle S. We denote an entry in a

node as E(EI, EP), where EI represents the smallest rectangle

bounding the sub-tree or the spatial object, EP is the pointer to

the sub-tree or the spatial object.

SearchSubTree(t, s)

1. If t is not a leaf

2.then for each entry E in t do

3. if EI overlaps S

4. then SearchSubTree(EP, s)

5. else SearchLeaf(T, s)

SearchLeaf(t, s)

1. for each entry E in t

2. do if EI overlaps s

3. then output E

Searching an R-Tree is unlike searching an B-Tree, All

internal nodes whose minimal bounding rectangles intersect

with the search rectangle may need to be visited during a

search.

We can apply the searching of an R-tree to find objects

that overlap a search object, say o, by the following steps.

SearchObj(t, o)

1. s←bounding box of the search object o

2. SearchSubTree(t,s)

and revise the above SearchLeaf(t,s) as follows:

SearchLeaf(t,s)

1. for each entry E in t

2. do if EI = s

3. then if EP = o

4.then output E

B) Insertion:

 Like insertion in B-Tree, inserting new data tuple into

R-Tree may cause splitting nodes and the splits propagate up

the tree. Furthermore, an insertion of a new rectangle can

increase the overlap of the nodes. Choosing which leaf to insert

a new rectangle and how to split nodes during re-balancing are

very critical to the performance of R-Tree

 Algorithm Insert: Insert a new index entry E into an

R-Tree T.

Insert(E, t)

1. L←ChooseLeaf(E, t) > select a leaf node L where to

place E

2. If L need not split

3. then install E

4. else SplitNode(L)

5. AdjustTree(L)

ChooseLeaf(E,t)

1. N←t

2. while N is not a leaf

3.do choose the entry F in N whose rectangle FI needs

least enlargement to include EI

4.N←FP

5. return N

C) Deletion:

Algorithm Delete: Remove an index record E from an R-

Tree

Delete(E, t)

1. L←FindLeaf(E, t)

2. If L is null

3. Then return

4. Remove E from L

5. CondenseTree(L)

6. If the root node has only one child.

7. then make the child the new root.

FindLeaf(E, t)

1. if t is not a leaf

2. then for each entry F in t

3. do if FI overlaps EI

4. then FindLeaf(E, FP)

5. else for each entry F in T

6. do if FI = EI & FP=EP

7. then return T

Analyzing Spatial Queries

 Next, after creating the indexes we will analyze the

spatial query, the query will be searched. The latitude longitude

and keyword of the location will be entered and in the output

nearest location of the query will be displayed. The minimum

bounding method (MBM) performs a single query, but uses the

minimum bounding rectangle to prune the search space.

Specifically, starting from the root of the R-tree for dataset,

MBM visits only nodes that may contain candidate points.

4. CONCLUSION

 The proposed system will use the indexing structure R

tree. The system will use the group nearest neighbor technique

for spatial queries, which uses minimum bounding method.

DOI: 10.18535/ijecs/v5i5.42

Sphurti S. Sao, IJECS Volume 05 Issue 5 May 2016 Page No.16584-16588 Page 18588

This method will use the minimum bounding rectangle to prune

the search space.MBR are frequently used as an indication of

the general position of a geographic feature or dataset for either

display, first approximation spatial query or spatial indexing

purpose. The system is working well as it shows the nearest

location based on query without taking too much time.

 REFERENCES

[1] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, “Processing Spatial-
Keyword (SK) Queries in Geographic Information Retrieval (GIR)
Systems,” Proc. Scientific and Statistical Database Management
(SSDBM), 2007.

[2] Yufei Tao and Cheng Sheng, “Fast Nearest Neighbor Search with
Keywords”, IEEE transactions on knowledge and data engineering, VOL.
26, NO. 4, APRIL 2014.

[3] X. Cao, L. Chen, G. Cong, C.S. Jensen, Q. Qu, A. Skovsgaard, D. Wu,
and M.L. Yiu, “Spatial Keyword Querying,” Proc. 31st Int’l Conf.
Conceptual Modeling (ER), pp. 16-29, 2012.

[4] J. Lu, Y. Lu, and G. Cong, “Reverse Spatial and Textual k Nearest
Neighbor Search,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp. 349-360, 2011

[5] X. Cao, G. Cong, C.S. Jensen, and B.C. Ooi, “Collective Spatial Keyword
Querying,” Proc. ACM SIGMOD Int’l Conf. Management of Data, pp.
373-384, 2011.

[6] G. Cong, C.S. Jensen, and D. Wu, “Efficient Retrieval of the Top-k Most
Relevant Spatial Web Objects,” PVLDB, vol. 2, no. 1, pp. 337- 348,
2009.

[7] I.D. Felipe, V. Hristidis, and N. Rishe, “Keyword Search on Spatial
Databases,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 656-665, 2008.

[8] Y.-Y. Chen, T. Suel, and A. Markowetz, “Efficient Query Processing in
Geographic Web Search Engines,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 277-288, 2006.

[9] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword Search in
Relational Databases,” Proc. Very Large Data Bases (VLDB), pp. 670-
681, 2002.

[10] T.Miranda Lakshmi , A.Martin , R.Mumtaj Begum, Dr.V.Prasanna
Venkatesan, “An Analysis on Performance of Decision Tree Algorithms
using Student’s Qualitative Data”, I.J.Modern Education and Computer
Science, 2013, 5, 18-27 Published Online June 2013 in MECS

