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Abstract—Outlier detection in high-dimensional data presents various challenges resulting from the “curse of 

dimensionality.” A prevailing view is that distance concentration, i.e., the tendency of distances in high-dimensional data 

to become indiscernible, hinders the detection of outliers by making distance-based methods label all points as almost 

equally good outliers. In this paper, we provide evidence supporting the opinion that such a view is too simple, by 

demonstrating that distance-based methods can produce more contrasting outlier scores in high-dimensional settings. 

Furthermore, we show that high dimensionality can have a different impact, by reexamining the notion of reverse nearest 

neighbors in the unsupervised outlier-detection context. Namely, it was recently observed that the distribution of points’ 

reverse-neighbor counts becomes skewed in high dimensions, resulting in the phenomenon known as hubness. We provide 

insight into how some points (antihubs) appear very infrequently in k-NN lists of other points, and explain the connection 

between antihubs, outliers, and existing unsupervised outlier-detection methods. By evaluating the classic k-NN method, 

the angle-based technique designed for high-dimensional data, the density-based local outlier factor and influenced 

outlierness methods, and antihub-based methods on various synthetic and real-world data sets, we offer novel insight into 

the usefulness of reverse neighbor counts in unsupervised outlier detection. Index Terms—Outlier detection, reverse 

nearest neighbors, high-dimensional data, distance concentration  

1 INTRODUCTION 

OUTLIER (anomaly) detection refers to the task of 

identifying patterns that do  

not conform to established regular behavior [1]. Despite the 

lack of a rigid mathematical definition of outliers, their 

detection is a widely applied practice [2]. The interest in 

outliers is strong since they may constitute critical and 

actionable information in various domains, such as intrusion 

and fraud detection, and medical diagnosis. The task of 

detecting outliers can be categorized as supervised, semi-

supervised, and unsupervised, depending on the existence of 

labels for outliers and/or regular instances. Among these 

categories, unsupervised methods are more widely applied 

[1], because the other categories require accurate and 

representative labels that are often prohibitively expensive 

to obtain. Unsupervised methods include distance-based 

methods [3], [4], [5] that mainly rely on a measure of 

distance or similarity in order to detect outliers. A 

commonly accepted opinion is that, due to the “curse of 

dimensionality,” distance becomes meaningless [6], since 

distance measures concentrate, i.e., pairwise distances 

become indiscernible as dimensionality increases [7], [8]. 

The effect of distance concentration on unsupervised outlier 

detection was implied to be that every point in high-

dimensional space becomes an almost equally good outlier 

[9]. This somewhat simplified view was recently challenged 

[10]. Our motivation is based on the following factors: 1) It 

is crucial to understand how the increase of dimensionality 

impacts outlier detection. As explained in [10] the actual 

challenges posed by the “curse of dimensionality” differ 

from the commonly accepted view that every point becomes 

an almost equally good outlier in high-dimensional space 

[9]. We will present further evidence which challenges this 

view, motivating the (re)examination of methods. 2) 
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Reverse nearest-neighbor counts have been proposed in the 

past as a method for expressing outlierness of data points 

[11], [12],1 but no insight apart from basic intuition was 

offered as to why these counts should represent meaningful 

outlier scores. Recent observations that reverse-neighbor 

counts are affected by increased dimensionality of data [14] 

warrant their reexamination for the outlier-detection task. In 

this light, we will revisit the ODIN method [11]. Our 

contributions can be summarized as follows: 1) In Section 3 

we discuss the challenges that unsupervised outlier detection 

faces in high-dimensional space. Despite the general 

impression that all points in a high-dimensional data set 

seem to become outliers [9], we show that unsupervised 

methods can detect outliers which are more pronounced in 

high dimensions, under the assumption that all (or most) 

data attributes are meaningful, i.e. not noisy. Ourfindings 

complement the observations from [10] by demonstrating 

such behavior on data originating from a single distribution 

without outliers generated by a different mechanism. Also, 

we explain how high dimensionality causes such 

pronounced outlierness in comparison with low-dimensional 

settings. 2) Recently, the phenomenon of hubness was 

observed [14], which affects reverse nearest-neighbor 

counts, i.e. k-occurrences (the number of times point x 

appears among the k nearest neighbors of all other points in 

the data set). Hubnessis manifested with the increase of the 

(intrinsic) dimensionality of data, causing the distribution of 

k-occurrences to become skewed, also having increased 

variance. As a consequence, some points (hubs) very 

frequently become members of k-NN lists and, at the same 

time, some other points (antihubs) become infrequent 

neighbors. In Section 4 we examine the emergence of 

antihubs and the way it relates to outlierness of points, also 

considering lowdimensional settings, extending our view to 

the full range of neighborhood sizes, and exploring the 

interaction of hubness and data sparsity. 3) Based on the 

relation between antihubs and outliers in high- and low-

dimensional settings, in Section 5 we explore two ways of 

using k-occurrence information for expressing the 

outlierness of points, starting with the method ODIN 

proposed in [11]. Our main goal is to provide insight into 

the behavior of k-occurrence counts in different realistic 

scenarios (high and low dimensionality, multimodality of 

data), that would assist researchers and practitioners in using 

reverse neighbor information in a less ad-hoc fashion. 4) 

Finally, in Section 6 we describe experiments with synthetic 

and real data sets, the results of which illustrate the impact 

of factors such as dimensionality, cluster density and 

antihubs on outlier detection, demonstrating the benefits of 

the methods, and the conditions in which the benefits are 

expected.  

2 RELATED WORK 

According to the categorization in [1], the scope of our 

investigation is to examine: (1) point anomalies, i.e., 

individual points that can be considered as outliers without 

taking into account contextual or collective information, (2) 

unsupervised methods, and (3) methods that assign an 

“outlier score” to each point, producing as output a list of 

outliers ranked by their scores. The described scope of our 

study is the focus of most outlier-detection research [1]. 

Among the most widely applied methods within the 

described scope are approaches based on nearest neighbors, 

which assume that outliers appear far from their closest 

neighbors. Such methods rely on a distance or similarity 

measure to find the neighbors, with Euclidean distance 

being the most popular option. Variants of neighbor-based 

methods include defining the outlier score of a point as the 

distance to its kth nearest neighbor [3] (henceforth referred 

to as the k-NN method), or as the sum of distances to the k 

nearest neighbors [4]. Related to these methods are 

approaches that determine the score of a point according to 

its relative density, since the distance to the kth nearest 

neighbor for a given data point can be viewed as an estimate 

of the inverse density around it [5]. A widely-

useddensitybased method is the local outlier factor (LOF) 

[15], which influenced many variations, e.g., the local 

correlation integral (LOCI) [16], local distance-based outlier 

factor (LDOF) [17], and local outlier probabilities (LoOP) 

[18]. The angle-based outlier detection (ABOD) [19] 

technique detects outliers in high-dimensional data by 

considering the variances of a measure over angles between 

the difference vectors of data objects. ABOD uses the 

properties of the variances to actually take advantage of high 

dimensionality and appears to be less sensitive to the 

increasing dimensionality of a data set than classic distance-

based methods. The study in [20] distinguishes three 

problems brought by the “curse of dimensionality” in the 

general context of search, indexing, and data mining 

applications: poor discrimination of distances caused by 

concentration, presence of irrelevant attributes, and presence 

of redundant attributes, all of which hinder the usability of 

traditional distance and similarity measures. The authors 

conclude that despite such limitations, common 

distance/similarity measures still form a good foundation for 

secondary measures, such as shared-neighbor distances, 

which are less sensitive to the negative effects of the curse. 

Zimek et al. [10] continue the discussion of problems 

relevant to unsupervised outlier-detection methods in 

highdimensional data by identifying seven issues in addition 

to distance concentration: noisy attributes, definition of 

reference sets, bias (comparability) of scores, interpretation 

and contrast of scores, exponential search space, data-

snooping bias, and hubness. In this article we will focus on 

the aspect of hubness, and assume that all attributes carry 

useful information, i.e., are not overly noisy. Finally, the 

notion of reverse nearest neighbors, considered important in 
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areas outside outlier detection [21], [22], was used to 

formulate outlier scores in various ways. In [11], the reverse 

k-nearest neighbor count is defined to be the outlier score of 

a point in the proposed method ODIN, where a user-

provided threshold parameter determines whether a point is 

designated as an outlier or not. Experiments were performed 

on low-dimensional data, and offered little insight into the 

reason why reverse nearest neighbors should constitute 

meaningful outliers. In [12], a method for detecting outliers 

based on reverse neighbors was briefly considered, judging 

that a point is an outlier if it has a zero k-occurrence count. 

The proposed method also does not explain the mechanism 

which creates points with low k-occurrences, and can be 

considered a special case of ODIN with the threshold set to 

0. In [23], the relation 

Fig. 1. Outlier scores versus dimensionality d for uniformly distributed data in ½0; 1 d : (a) Standard deviation; (b) Histogram of 

50-NN scores; (c) Histogram of normalized ABOD scores. 

between reverse nearest neighbors and outliers was 

explored, but again no investigation was performed on how 

reverse neighbors are connected with high-dimensional 

phenomena, focusing instead on application to stream 

mining and improving the execution time of reverse nearest-

neighbor computation.The main focus of [24] was on the 

efficiency of computing INFLO scores. In contrast to all 

approaches above, we focus on highdimensional as well as 

low-dimensional data and use reverse nearest neighbors only 

through the distribution of k-occurrences, taking into 

account the inherent relationship between dimensionality, 

neighborhood size and reverse neighbors that was not 

observed in previous outlier-detection work. In doing so, we 

will revisit the outlier scoring method ODIN [11]. 

3 OUTLIER DETECTION IN HIGH DIMENSIONS: 

IMPROVING THE PERSPECTIVE In this section we 

revisit the commonly accepted view that in high-

dimensional space unsupervised methods detect every point 

as an almost equally good outlier, since distances become 

indiscernible as dimensionality increases [9]. In [10] this 

view was challenged by showing that the exact opposite 

may take place: as dimensionality increases, outliers 

generated by a different mechanism from the data tend to be 

detected as more prominent by unsupervised methods, 

assuming all dimensions carry useful information. We 

present an example revealing that this can happen even 

when no true outliers exist, in the sense of originating from 

a different distribution than other points. Example 3.1. Let 

us observe n ¼ 10;000 d-dimensional points, whose 

components are independently drawn from the uniform 

distribution in range ½0; 1. We employ the classic k-NN 

method [3] (k ¼ 50; similar results are obtained with other 

values of k). We also examine ABOD [19] (for efficiency 

reasons we use the FastABOD variant with k ¼ 0:1n), and 

use standard deviation to express the variability in the 

assigned outlier scores. Fig. 1a illustrates the standard 

deviations of outlier scores against dimensionality d. Let us 

observe the k-NN method first. For small values of d, 

deviation of scores is close to 0, which means that all points 

tend to have almost identical outlier scores. This is expected, 

because for low d values, points that are uniformly 

distributed in ½0; 1 d contain no prominent outliers. This 

assumption also holds as d increases, i.e., still there should 

be no prominent outliers in the data. Nevertheless, with 

increasing dimensionality, for k-NN there is a clear increase 

of the standard deviation. This increase indicates that some 

points tend to have significantly smaller or larger outlier 

scores than others. This can be observed in the histogram of 

the outlier scores in Fig. 1b, for d ¼ 3 and d ¼ 100. In the 

former case, the vast majority of points have very similar 

scores. The latter case, however, clearly shows the existence 

of points in the right tails of the distributions which are 

prominent outliers, as well as points on the opposite end 

with much smaller scores. 1a says little about the expected 

performance of ABOD, which ultimately depends on the 

quality of the produced outlier rankings [10]. However, 

when scores are regularized by logarithmic inversion and 

linearly normalized to the ½0; 1 range [25], a trend similar 

to k-NN can be observed, shown in Fig. 1c. As discussed, 

high dimensionality causes the emergence of some points 

that tend to be clearly detected as outliers by common 

unsupervised methods. This happens despite the fact that the 
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existence of prominent outliers is not expected. Apparently, 

it is only the increase of dimensionality that caused the 

generation of the prominently scored outliers. This 

observation raises several questions: Is such behavior an 

artefact of the selected data distribution? Is it a property of 

the distance function used? Can these prominent outliers 

somehow be characterized? In the example above, we chose 

the setting involving uniformly distributed random points 

because of the intuitive expectation that it should not contain 

any really prominent outliers. Analogous observations can 

be made with other data distributions, numbers of drawn 

points, and distance measures. The demonstrated behavior is 

actually an inherent consequence of increasing 

dimensionality of data, with the tendency of the detected 

prominent outliers to come from the set of antihubs—points 

that appear in very few, if any, nearest neighbor lists of 

other points in the data.  

4 ANTIHUBS AND OUTLIERS 

In this section, we observe antihubs as a special category of 

points in high-dimensional spaces. We explain the reasons 

behind the emergence of antihubs and examine their relation 

to outliers detected by unsupervised methods in the context 

of varying neighborhood size k. Finally, we explore the 

interplay of hubness and data sparsity. 4.1 Antihubs: 

Definition and Causes The existence of antihubs is a direct 

consequence of high dimensionality when neighborhood 

size k is small compared to the size of the data. To 

understand this relationship more clearly, let us first briefly 

review the counterintuitive concentration behavior of 

distances as dimensionality increases [8]. Distance 

concentration refers to the tendency of distances in high-

dimensional data to become almost indiscernible as 

dimensionality increases, and is usually expressed through a 

ratio of a notion of spread (e.g., standard deviation) and 

magnitude (e.g., the expected value) of the distribution of 

distances of all points in a data set to some reference point. 

If this ratio tends to 0 as dimensionality goes to infinity, it is 

said that distances concentrate. Considering random data 

with iid coordinates and Euclidean distance, concentration is 

reflected in the fact that, as dimensionality increases, the 

standard deviation of the distribution of distances remains 

constant, while the mean value continues to grow. More 

visually it can be said that, as dimensionality increases, all 

points tend to lie approximately on a hypersphere centered 

at the reference point, whose radius is the mean distance. It 

is important to note that in high-dimensional space any point 

can be used as the reference point, producing the 

concentration effect: the radius of the sphere (the expected 

distance to the reference point) increases with 

dimensionality, while the spread of points above and below 

the surface (e.g., the standard deviation of the distance 

distribution) becomes negligible compared to the radius. 

Returning to antihubs, their emergence is an aspect of the 

“curse of dimensionality” related to distance concentration. 

This aspect will be generally referred to as hubness [14]. To 

describe hubness, let us define the notions of k-occurrences, 

hubs and antihubs. 4.2 The Relation BetweenAntihubs and 

Outliers Outlier-detection methods can generally be 

categorized into global and local approaches, i.e., the 

decision on the outlierness of some data object can be based 

on the complete (global) database or only on a (local) 

selection of data objects [27]. Naturally, there can exist a 

whole continuum of degrees between the two opposing 

extremes of “global” and “local,” where the degree of 

locality may be tunable using parameters. For example, by 

raising the value of k when using the classic k-NN outlier 

detection method, one increases the set of data points used 

to determine the outlier score of the point of interest, 

moving from a local to a global notion of outlierness, and 

ending in the extreme case when k ¼ n  1. Likewise, raising 

k when determining reverse nearest neighbors, i.e., antihubs, 

raises the expected size of reverse-neighbor sets (while their 

size can still vary amongst points).5 Since antihubs have 

been defined as points with the lowest Nk values, we can 

explore the relation between Nk scores and outlierness by 

measuring the correlation between Nk values and outlier 

scores produced by unsupervised methods. For the data in 

The measured correlations are plotted in Figs. 3a and 3b, 

together with the correlation between inverse Nk values and 

the distance to the data set mean (Fig. 3c) for two values of 

dimensionality: low (d ¼ 2) and high (d ¼ 100). 

Furthermore, we consider two portions of points for 

computing correlations: all points (p ¼ 100%) and p ¼ 5% 

of points with the highest distance from the data set mean as 

the strongest outliers. It can be seen that for the 

highdimensional case correlations for p ¼ 100% are very 

strong for a wide range of k values, with the exceptions 

being very low (close to 1) and very high values (close to n 

¼ 10;000). For p ¼ 5% agreement between NkandIn 

summary, the emergence of antihubs is closely connected 

with outliers both in high-dimensional and lowdimensional 

data. The examples above illustrate this connection, and 

suggest that antihubscan be used as an alternative to 

standard outlier-detection methods. However, from the 

discussion above one could deduce that antihubs simply 

provide a crude approximation of established outlier scoring 

methods for some ranges of values of parameter k. As we 

will see in the next section, this is not the case, since in more 

realistic settings involving multimodal data the correlations 

can behave quite differently. 4.3 Multimodality and 

Neighborhood Size Real data differs from the synthetic 

examples from previous sections in many respects, 

including existence of multiple clusters in the data, and 

possibility that different regions where data resides have 

different densities. 

5 CONCLUSIONS 
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In this paper, we provided a unifying view of the role of 

reverse nearest neighbor counts in problems concerning 

unsupervised outlier detection, focusing on the effects of 

high dimensionality on unsupervised outlier-detection 

methods and the hubness phenomenon, extending the 

previous examinations of (anti)hubness to large values of k, 

and exploring the relationship between hubness and data 

sparsity. Based on the analysis, we formulated the AntiHub 

method for unsupervised outlier detection, discussed its 

properties, and proposed a derived method which improves 

discrimination between scores. Our main hope is that this 

article clarifies the picture of the interplay between the types 

of outliers and properties of data, filling a gap in 

understanding which may have so far hindered the 

widespread use of reverse-neighbor methods in 

unsupervised outlier detection. The existence of hubs and 

antihubs in high-dimensional data is relevant to machine-

learning techniques from various families: supervised, semi-

supervised, as well as unsupervised .In this paper we 

focused on unsupervised methods, but in future work it 

would be interesting to examine supervised and semi-

supervised methods as well. Another relevant topic is the 

development of approximate versions of AntiHub methods 

that may sacrifice accuracy to improve execution speed. An 

interesting line of research could focus on relationships 

between different notions of intrinsic dimensionality, 

distance concentration, (anti)hubness, and their impact on 

subspace methods for outlier detection. Finally, secondary 

measures of  
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