
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 5 Issue 5 May 2016, Page No. 16532-16538

Saidu Isah Rambo, IJECS Volume 05 Issue 5 May 2016 Page No.16532-16538 Page 16532

Attack Graph-Based Approach For Enterprise Networks Security Analysis

Saidu Isah Rambo, Ibrahim M, Anka

ABSTRACT

Network administrators are always faced with numerous challenges of identifying threats and in

retrospect, securing the organization’s network. The classical approach of identifying the vulnerability in the

network is by using commercially developed tools that do not take into cognisance vulnerability interaction

between network elements and their behavioral pattern.Therefore, network administrators have to take a

hollistic methods to identify vulnerability interrelationships to be captured by an attack graph which will

help in identifying all possible ways an attacker would have access to critical resources. The objective

therefore is to design an attack graph–based approach for analyzing security vulnerabilities in enterprise

networks, implement and evaluate performance of the approach.

This work proposes an attack graph network security analyser based. The attack graph directly

illustrates logical dependencies among attack goals and configuration information. In the attack graph, a

node in the graph is a logical statement and an edge in the graph is represented by causality relation between

network configurations and an attacker’s potential privileges. The benchmark is just a collection of Datalog

tuples representing the configuration of the synthesized networks, the graph generation CPU time was

compared to Sheyner attack graph toolkit. The result in the graph shows the comparison of the graph

builder CPU time for the case of a fully connected network and 5 vulnerabilities per host which shows

Sheyner’s tools grows exponentially.Some important contributions of this work include establishing an

attack graph–based approach for enterprise networks security analysis that can capture generic security

interactions and specify security relevant configuration information.

KEYWORDS: Datalog, CERT/CC, FW, webServer, workStation, fileServer.

1.1 INTRODUCTION

The increased dependent and reliance of networks

by enterprise cannot be over emphasized. The

external as well as the internal, threats that are

continually faced by these enterprises have always

increased phenomenally. Network security

administrators are always faced with numerous

challenges of identifying these threats and in

retrospect, securing the organization’s network.

The classical approach of identifying the

vulnerability of each element in the network is by

using commercially developed tools that do not

take into cognisance vulnerability interaction

between network elements. Additionally, it has to

identify the behavioral pattern of individual

elements in the network. Therefore, network

administrators have to take a more proactive and

hollistic approach to identify vulnerability

interrelationships and possible interaction to be

captured by an attack graph which would help in

identifying all possible ways in which an attacker

would have access to critical resources in the

network.

Statistically, network administrators are most

often faced with challenges as a result of software

vulnerabilities on network hosts. For over 20

years, there have been an ever-growing number of

http://www.ijecs.in/

DOI: 10.18535/ijecs/v5i5.33

Saidu Isah Rambo, IJECS Volume 05 Issue 5 May 2016 Page No.16532-16538 Page 16533

security vulnerabilities discovered in software and

information systems. According to the statistics

published by CERT/CC in (2013); a central

organization for reporting security incidents, the

numbers of reported vulnerabilities have grown

considerably in the last 10 years. It is expected

that the rate at which new software vulnerabilities

emerge will continue to increase, in the

foreseeable future. With thousands of new

vulnerabilities discovered each year, maintaining

100% patch level is untenable and sometimes

undesirable for most organizations, while in many

cases patches come right after vulnerability

reports (William et al., 2000).

2.1 MATERIALS AND METHOD

The systems require PC’s with the following

minimum configurations: The performance of

the MulVAL scanner on a Linux 9 host (kernel

version 2.4.20-8) was measured. The CPU B940

is an Intel(R) Pentium(R) processor with 4.0GB

RAM. 40GB hard disk drive, A VGA monitor, A

standard keyboard, a mouse and a converter/UPS

to provide protection to the systems from excess

power source.

The system is to be loaded with a unix/ linux

software or the internetworks operating system of

the Microsoft software and other relevant

softwares.

There should also be an internet connection of

atleast 3G internet link.

Routers and firewalls with different specifications

are needed for the serial connections and can also

be used for the LAN connections.

Switches, hubs, repeaters, bridges and vlans used

in various connections are to be configured as

appropriate to provide smooth communication.

Fibre optic cables, coaxial cables, STP cables

UTP cables and various specifications of CAT 5

cables are needed to provide straightthrough

cables, crossover cables and the rollover cables

where applicable.

VSAT with a c-band is needed to direct

communication with the satellite or the service

provider.

3.1 SYSTEM DESING

A logical attack graph is a di-graph and

can be represented in the form of tree with a

possible cross links between nodes. Figure 3.1

shows both the graph representation of a logical

attack graph. There are two kinds of nodes in the

graph; the derivation node and the fact node. The

derivation node is represented as a rectangle and

the fact node is represented as a circle/small star.

There are also two kinds of fact node; the

primitive fact node represented as a solid small

star and the derived fact node is represented as a

circle with a number inserted or encribed inside.

Every fact node in a logical graph is label with a

logical statement in a form of a predicate applied

in its argument. The root node is the attack goal;

in the example it is

exeCode(attacker,workstation,root) meaning “the

attacker can execute arbitrary code as user root on

machine workstation” Every derivation node is

label with an interaction rule that is used for the

derivation step.

Fig 3.1: Graphical representation of logical

attack graph

r

0

0 r

1
2

r2

a r2

b

3 R

3

4

R

4

5

R

5

6 r

6

1

DOI: 10.18535/ijecs/v5i5.33

Saidu Isah Rambo, IJECS Volume 05 Issue 5 May 2016 Page No.16532-16538 Page 16534

The edge in the graph represent the “depend on”

relation. A fact node depends on one or more

derivation node, each of which represent an

application of an interaction rule that yield the

fact; a derivation node depend on one or more fact

nodes which together satisfies the precondition of

a rule. Thus, a logical attack graph is a bipartite

di-graph. The derivation nodes serves a medium

between a facts and its ‘reasons’, i.e. how the fact

becomes true. The derivation nodes directed from

the fact node forms a disjunction. A derivation

node represent a successful application of an

interaction rule where all its preconditions are

satisfied by its children. Therefore, the fact nodes

directed from a derivation node forms a

conjunction.

3.2 Algorithm

The proposed attack graph directly

illustrates logical dependencies among attack

goals and configuration information. The

reasoning engine was modified so that besides a

“true’ or “false” answer, a Prolog query also

records an attack simulation trace as a side effect

of the evaluation and translated into the following

form:

ExecCode (Attacker, Host, User) :-

networkservice (Host, Program,

Protocol, Port, User)

vulExists (Host,Vul ID, Program,

remoteExploit, PrivEscalation),

netAccess (Attacker, Host, Protocol, Port),

assert_trace(because (

 ‘remote exploit of a server program’,

 execCode(Attacker, Host, User) ,

[networkservice (Host, Program,

 Protocol, Port, User),

 vulExists (Host, Vul ID, Program,

 remoteExploit, PrivEscalation),

 netAccess (Attacker, Host,

 Protocol, Port)])).

A sub-goal is added, which calls the

function assert_trace. When the evaluation of the

rule succeeds, this function records the successful

derivation into a trace file. In the attack graph, a

node in the graph is a logical statement and an

edge in the graph is represented by causality

relation between network configurations and an

attacker’s potential privileges. A logical attack

graph was viewed as a derivation graph for a

successful Prolog query. In Prolog query, there is

a derivation node “and” node, where all it children

are conjuncted. A derived fact node is an “or”

node where all it children represent different ways

to derive and the primitive fact node is a leaf node

in the graph which represent a pieces of

configuration information.

Let (Nr, Np, Nd , Е, L, G)represents a

logical attack graph, where Nr, Np, and Nd and G

are sets of derivation nodes, primitive fact nodes,

derived fact nodes and attacker’s goal respectively

and are also referred to as disjoint nodes in the

graph;Е (Nr x (Np Ս Nd,)) Ս (Nd x Nr), L is the

mapping from a node to its label and G ϵ Nd is the

attacker’s goal. Also, Let T, I, C, F represent the

trace step terms (interaction rule, fact and

conjunct) and attacker’s goal G, interactionRule

(a string associated with interaction rule),

conjunct (an instantiation fact or list of fact of

interaction rule) and predicates (list of constant)

respectively. A fact is primitive if it comes from

the input to the MulVal-reasoning engine. A

derived fact is the result of applying interaction

rule iteratively on the input facts.

The attack graph is obtained as follows:

DOI: 10.18535/ijecs/v5i5.33

Saidu Isah Rambo, IJECS Volume 05 Issue 5 May 2016 Page No.16532-16538 Page 16535

Let Nr, Np, Nd , Е, L ← 0;

For each t ϵ Ƭ, the derivation node r is

Nr ← Nr Ս {r};

L ← L Ս {r → I};

For n ϵ Nd suchthat L{n} = F then

Е ← Е Ս {(n, r)

Otherwise, a new fact node n is created as

L ← L Ս {r → Fact};

Nd ← Nd Ս {n};

For each fact f in C

For c ϵ (Np Ս Nd) such thatL(c) = f then

Е ← Е Ս {(r, c)}

Otherwise, a new fact node c is created as

L ← LՍ {c → f}

A logic attack graph can be constructed from the

trace step information. Every trace step term

becomes a derivation node in the attack graph.

The fact field in the trace step becomes the node’s

parent and the conjunct field becomes its children.

The performance evaluation of the approach was

based on the computational complexity of the new

approach with the existing one. The generation of

attack trace only introduces a constant time

overhead for every successful Prolog engine

derivation.

3.3 Logical/automated attack-graph

generation

While attack trees generated by the meta-

interpreter serve the purpose of visualizing attack

paths, the methodology also has several setbacks.

Meta-interpreting; a prolog program is one order

of magnitude slower than executing it directly in

Prolog. Moreover, even if there is only a

polynomial number of facts that can be derived by

a Datalog program, the number of proof/attact

trees generated could be exponential in the worst

case. The XSB system includes a justifier program

(Bernstein et al., 2000) that can compute evidence

of derived literals while the program is running,

thus eliminating the need for meta-interpreting

and repeatation which might eventually result in

looping. The evidence is stored in the Prolog

database and can be extracted for visualization.

According to test results (Bernstein et al., 2000),

online justification only introduces 8% runtime

overhead to the program, much better than meta-

interpretation. To avoid the exponential blow up

of proof trees, an acyclic graph can be out-putted

visualizing the logical relationships among

derived literals. The size of such graphs is

polynomial to the size of the program. For the

attack graph generated to be more useful and user-

friendly attack graph generating software was

developed.

4.1 LOGICAL TRACE STEP

Figure 4.4 shows the number of attack simulation

trace steps, which is the inputed to the graph

builder, is shown for the same set of test cases.

For the worst case scenario, the number of trace

steps is a quadratic function of the number of

hosts. This verifies that Datalog evaluation inthe

reasoning engine takes O(n2) derivation steps to

complete.

Figure 4.1: Graph representing trace steps

4.2 CPU Usage

Figure 4.1 shows the graph generation

CPU time for each of the simulated analysis

DOI: 10.18535/ijecs/v5i5.33

Saidu Isah Rambo, IJECS Volume 05 Issue 5 May 2016 Page No.16532-16538 Page 16536

problems of various sizes and topologies. The

worst case is for a fully connected network. In

this case the asymptotic CPU time is between

O(n2) and O(n3), where n is the number of

hosts. In Figure 4.2, it is noted that ideally the

complexity is O(n2), if table look-up takes

constant time. However, our implementation uses

the simple “map” template in Java standard

library and its look-up time depends on the size of

the table. It is opined that after replacement with a

custom-designed hash table implementation, the

graph generation time would be near quadratic

even for the worst case scenario.

Figure 4.2: Graph generation CPU usage as a

function of network size for several network

topologies.

4.3 RAM usage

Figure 4.3 showsthe memory usage as a function

of network size for the same four network

topologies. The worst case here is again a fully

connected network, which has a asymptotic

memory usage slightly lower than O(n
2
). In the

two biggest cases (1000 host for fully-connected

and partitioned network), we almost exhausted

the 1GB memory on the test machine. The

memory usage for the “star” and “ring” topology

are not identical, although the difference is not

quite visible on logarithmic scale.

Figure 4.3: Graph generation memory usage as

a function of network size for several network

topologies.

Figure 4.4shows that the number of derived fact

nodes in the attack graph grows linearly with the

size of the network. An interesting case is the one

for the “star” topology where the graph nodes

remain constant regardless of the network size.

This is because in that topology, the only attack

path is from the attack machine to the hub, and

then from the hub to the target machine.

Figure 4.4: Graph representing derived facts

DOI: 10.18535/ijecs/v5i5.33

Saidu Isah Rambo, IJECS Volume 05 Issue 5 May 2016 Page No.16532-16538 Page 16537

Figure 4.5 Showsthe attack graph

generation CPU time is shown as a function of the

network size for a fully connected network and for

the number of vulnerabilities per host varied from

1 to 100. It shows that vulnerability density has a

bigger impact when the network size is small. As

the network size grows the CPU time is

dominated by the number of machines, and thus

vulnerability density has a less visible impact. Our

graph builder was directly compared to the

Sheyner attack graph toolkit by running both tools

with equivalent input data. The Sheyner attack

graph toolkit was tested on a Pentium III-M CPU,

256MB RAM, Fedora Core 1 LINUX operating

system.

Figure 4.5: Graph generation CPU time

Figure 4.5: Graph generation CPU time for a fully

connected network and number of vulnerabilities

per host varying from 1 to 100.

Figure 4.6 is a comparison of graph builder CPU

time for the case of a fully connected network and

5 vulnerabilities per host (note that only the Y axis

is on logarithmic scale in this chart). From the

diagram it is clear that the running time for

Sheyner's tool grows exponentially. The growth

trend for MulVAL is not obvious in this diagram

because the running time is too short. But the

difference between the two tools is obvious.

Figure 4.6 Graph generation CPU time

Figure 4.6Graph generation CPU time compared

to Sheyner attack graph toolkit. Fully connected

network and 5 vulnerabilities per host.

5.0 CONCLUSION AND

RECOMMENDATIONS

5.1 CONCLUSION

The ultimate objective of this paper is to The

specific objectives are to: design an attack

graph–based approach for analyzing security

vulnerabilities in enterprise networks;

andimplement and evaluate performance of the

approach.

5.2 RECOMMENDATIONS: It is

recommended that It would be necessary for

further study to be carried out in the areas of Also,

the patching of machines in a network systems

does not require rebooting the system. It would be

an interesting research topic to study how to

provide automatic and a heuristics as to what

countermeasures to apply. This is beyond the

scope of this dissertation and is left for further

research work.

DOI: 10.18535/ijecs/v5i5.33

Saidu Isah Rambo, IJECS Volume 05 Issue 5 May 2016 Page No.16532-16538 Page 16538

Finally, there is need to investigate precisely how

to handle aggregates and negation in a distributed

setting. It seems to be possible to incorporate

well-known techniques to maintain states in the

centralized setting into PSN
v

References

Roychoudhury A., Ramakrishnan C. R., and

Ramakrishnan I. V. (2000). Justifying

proofs using memo tables. In Principles and

Practice of Declarative Program- ming, pages

178–189.

Konstantinou A.V., Yemini Y. and Florissi D.

(2002). Towards self-configuring networks.

In DARPA Active Networks Conference and

Exposition (DANCE), San Franscisco, CA.

Gelder A., Ross K. and Schlipf J.S. (1988).

Unfounded sets and well- founded semantics

for general logic programs. In PODS ’88:

Proceedings of the seventh ACM SIGACT-

SIGMOD-SIGART symposium on Principles

of database systems, pages 221–230, , ACM

Press. New York, NY, USA.

Keromytis A.D., Ioannidis S., Greenwald M.B.,

Smith J.M. (2003). The STRONGMAN

architecture. In Proceedings of the 3rd

DARPA Information Survivability

Conference and Exposition (DISCEX III),

pages 178 –188, Washington, DC.

Wang A., Jia L., Liu C., Loo B.T., Sokolsky O.

and Basu P. (2009). Formally Verifiable

Networking. In SIGCOMM HotNets-VIII.

Gupta A., Mumick I.S. and Subrahmanian V. S.

(1993). Maintaining views incrementally. In

Peter Buneman and Sushil Jajodia, editors,

Proceedings of the 1993 ACM SIGMOD

International Conference on Management of

Data, Washington, D.C., May 26-28,

pages 157–166. ACM Press.

Loo B.T., Condie T., Hellerstein J.M., Maniatis P.,

Roscoe T. and Stoica I. (2005).

Implementing Declarative Overlays. In

SOSP.

Loo B.T., Hellerstein J.M., Stoica I. and

Ramakrishnan R. (2005). Declarative

Routing: Extensible Routing with Declarative

Queries. In SIGCOMM.

Loo B.T., Condie T., Garofalakis M., Gay D.E.,

Hellerstein J.M. Maniatis P., Ramakrishnan

R., Roscoe T., and Stoica I. (2006).

 Declarative Networking: Language,

Execution and Optimization. In SIGMOD.

Loo B.T., Condie T., Garofalakis M., Gay D.E.,

Hellerstein J.M., Maniatis P., Ramakrishnan

R., Roscoe T. Stoica I. (2009). Declarative

Networking. In Communications of the ACM

(CACM).

Loo B.T., Zhou W. (2012) NDlog Declarative

Networking declarative query language for

specifying and implementing network

protocols, Morgan & Claypool Publishers,

Washington.

Schneier B., Wiley J. (2000) Secrets & Lies:

Digital Security in a Networked World,

chapter 21.

http://www.google.com.ng/search?tbo=p&tbm=bks&q=inauthor:%22Boon+Thau+Loo%22
http://www.google.com.ng/search?tbo=p&tbm=bks&q=inauthor:%22Wenchao+Zhou%22

