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Abstract 
Recently the cloud computing has been gaining significant importance in almost all the fields. In this survey we discuss the 
limitations and opportunities of deploying data management issues on cloud computing platforms. A cloud database man-
agement system is a distributed database that delivers computing as a service. The various issues related to security that has 
to be offered by the Database as a service is studied. Various operations such as Scaling, provisioning, performance tuning, 
privacy and backup. This study also reveals about consistency rationing and various adaptive policies. 
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1. Introduction 
 

 DBMS which is an integral and indispensable 
component is outsourced is attractive because energy, 
hardware and DBaas (Database as a Service) are 
minimized. This survey deals with determining workload 
for multi tenancy environment, elastic scalability and an 
adjustable security scheme to run over encrypted data. This 
survey also studies about the efficient and scalable ACID 
transactions in the cloud by decomposing functions of a 
database storage engine into transactional component and 
Data Component. 

2. Data Management in the Cloud 
 Cloud computing is elastic in the face of changing 
conditions. The payment is only for one needs and so 
increased resources can be obtained to handle spikes in load 
and then it can be released. It is desirable that a complete 
software stack with a restricted API so that software 
developers are forced to write programs that can run in a 
shared-nothing environment and thus facilitate elastic 
scaling [1].  

2.1 Data management applications in the cloud 

 The two largest components of the data management 
market into the cloud are transactional data management 
and analytical data management. The transactional data 
management does not use a shared-nothing architecture. 
The main benefit of a shared-nothing architecture is its sca-
lability [2]. It is hard to maintain ACID in the face of data 
replication over large geographic distances. Applications 
like airline reservations and employee data systems have 
been the bread and butter of database industry - but these 

applications need an RDMS and transaction processing ca-
pabilities. If these applications are to be deployed over the 
Cloud, it is essential to come up with a scalable consistency 
model over a scalable data store for the Cloud that supports 
referential integrity and a transaction mix with a majority of 
updates. This boils down to a problem of deploying data-
bases over the Cloud without compromising on any existing 
features [3]. A good DBaaS must support database and 
workloads of different sizes. A DBaaS must therefore sup-
port scale-out, where the responsibility for query processing 
and the corresponding data is partitioned amongst multiple 
nodes to achieve higher throughput. The workload-aware 
partitioner uses graph partitioning to automatically analyze 
complex query workloads and map data items to nodes to 
minimize the number of multi-node transac-
tions/statements.[4]. The system design of a the Relational 
cloud uses existing unmodified DBMS engine as the back-
end query processing and query nodes. Applications com-
municate with Relational Cloud using a standard connectiv-
ity layer such as JDBC. Relational Cloud runs the databases 
with the same database server. A special driver is used to 
communicate with the front end for maintaining the privacy 
of the data. The database has one or more tables and an as-
sociated workload, defined as the set of queries and transac-
tions issued to it. The database is partitioned into one or 
more pieces when the load exceeds the capacity of a single 
machine[5]. 
 
2.2 Database Partitioning 
 
 Relational Cloud uses database partitioning for two 
purposes: (1) To scale a single database to multiple nodes, 
useful when the load exceeds the capacity of a single ma-
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chine (2) to enable more granular placement and load bal-
ance on the back-end machines compared to placing entire 
databases. The main notion of this partitioning is to minim-
ize the number of multi-node transactions. Relational Cloud 
uses graph partitioning [6] to find ` balanced logical parti-
tions, while minimizing the total weight of the cut edges. 
This minimization corresponds to find a partitioning of the 
database tuples that minimizes the number of distributed 
transactions. The output of the partitioner is an assignment 
of individual tuples to logical partitions. Relational Cloud 
now has to come up with a succinct representation of these 
partitions, because the front-end’s router needs a compact 
way to determine where to dispatch a given SQL statement. 
Relational Cloud solves this problem by finding a set of 
predicates on the tuple attributes. It is natural to formulate 
this problem as a classification problem, where we are giv-
en a set of tuples (the tuple attributes are features), and a 
partition label for each tuple (the classification attribute). 
The system extracts a set of candidate attributes from the 
predicates used in the trace. The attribute values are fed into 
a decision tree algorithm together with the partitioning la-
bels. If the decision tree successfully generalizes the parti-
tioning with few simple predicates, a good explanation for 
the graph partitioning is found. If no predicate-based expla-
nation is found (e.g., if thousands of predicates are generat-
ed), the system falls back to lookup tables to represent the 
partitioning scheme.[4]. 
 
2.3 Resource Allocation 
 

Resource allocation is a major challenge when design-
ing a scalable, multi-tenant service like Relational Cloud. 
Problems include: (i) monitoring the resource requirements 
of each workload, (ii) predicting the load multiple work-
loads will generate when run together on a server, (iii) as-
signing workloads to physical servers, and (iv) migrating 
them between physical nodes. The monitoring and consoli-
dation engine  includes Resource Monitor which captures a 
number of DBMS and OS statistics from a running data-
base.,  a Combined Load Predictor which includes a devel-
oped a model of CPU, RAM, and disk that allows Kairos to 
predict the combined resource requirements when multiple 
workloads are consolidated onto a single physical server, a 
Consolidation Engine to: (1) minimize the number of ma-
chines required to support a given workload mix, and (2) 
balance load across the back-end machines, while not ex-
ceeding machine capacities.[4]. 
 
2.4 Privacy  
  
 CryptDB, To implement adjustable security, our idea is 
to encrypt each value of each row independently into an 
onion: each value in the table is dressed in layers of increa-
singly stronger encryption, as shown in Figure 2. Each in-
teger value is stored three times: twice encrypted as an 
onion to allow queries and once encrypted with homomo 
phic encryption for integers; each string type is stored once, 

encrypted in an onion that allows equalities and word 
searches and has an associated token allowing inequali-
ties.[4]. 
 
3. Replication –Fault Tolerance 

 
 A replica refers to a complete copy of the data. Fault-
tolerance and availability is ensured by replicating (or cach-
ing) frequently used data across multiple locations. The 
downside of this is that co-ordination of the various replicas 
is a cause for overhead, possibly reducing system availabili-
ty. This survey deals with elastic and scalable transaction 
management when databases are deployed as a service over 
the Cloud, without any loss of functionality. For DaaS (Da-
tabase as a Service), a scalable transaction management 
paradigm is necessary; one which would work well even 
when the majority of the transactions involve updates.[3]. 
 
3.1 Architectural Study 
  
 A node (or a replica) is a virtual machine instance. 
Each node consists of 1. Data Objects: Data Objects are 
simply tables stored as .db files on Amazon S3. Each data 
file contains a single. A table has many attributes and rows 
(like a matrix). Each table row has a unique row number 
and contains the timestamp of the transaction which per-
formed the last update. Data Objects are fully replicated 
over the network. Each row in the table has an entry for the 
last update time (or the value of the global time stamp of the 
transaction which last updated this row). 2. Update Queue: 
The Update Queue is the recovery mechanism present at 
each node. The transaction requests from the Transaction 
Managers (which are server-side virtual machine instances) 
are added to the Update Queue at each replica. 3. Queue 
Manager: The Queue Manager handles the Update Queue 
and runs the transaction with the smallest time-stamp. After 
successful commit, this transaction is dequeued. Other 
components of the system include: Interest Group (IG): 
An IG is a group of replicas in which all (or a majority of 
replicas) have the most recent global timestamp. Transac-
tion Managers (TMs): The TM is a server-side virtual ma-
chine instance. A TM is very closely associated with the 
replicas. One TM is designated as the Master TM (MTM). 
Read/write requests from the client are received by the 
TMs.[3] 
 
3.2 Consistency Algorithm and Recovery Algorithm 
 
 The client must submit an estimate of the transaction 
workload initially. This is used to determine the number of 
TMs and number of nodes (total number of virtual machine 
instances) to be launched on each hypervisor [7]. After this 
initial startup phase, the system scales with the transaction 
workload following the pay-as-you-go model. Initially, all 
the replicas start with the same version number- Version 0. 
All the IG maps are reset. The replicas are randomly 
grouped together into an IG by the MTM. The starting size 
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of the IG is specified by the application developer. The 
MTM then sends its IG map to other TMs for synchroniz 
ation. A client request can go to any TM, thus ensuring that 
no TM is overwhelmed by more requests than it can service 
(load balancing). The TM which receives the client write 
request multi-casts the request to all the nodes in the IG. 
The TM is required to wait for acknowledgment from only 
the current replicas in the IG. The nodes in the IG forward 
the write requests to the other replicas after sending their 
acknowledgements to the TM. Inside the IG, the updates are 
applied in parallel to the replicas. Hence, the amount of 
time the client has to wait is bounded by the slowest replica 
in the IG. This makes the write latency of the IG equal to 
the write latency of the slowest replica in the IG currently. 
Write latency of a replica for a TM is the difference be-
tween the time at which a TM sends an update to this repli-
ca and the time at which this TM receives the acknowled-
gement. Write latency is variable due to the dynamic nature 
of the IG. Suppose the IG has m nodes and the write latency 
of ith node is ti and the write latency of the IG is TIG. Then, 
TIG = max (t1, t2, t3, …, tm). 
The updates are performed on those replicas which are cur-
rently not 'in use'. These updates go into an Update Queue 
at each replica. In each replica, the Queue Manager de-
queues the update with the smallest timestamp from the 
Update Queue. If at least one of the rows affected by this 
update is ‘in use’ then the update must wait in the Update 
Queue. This ensures that the updates at all replicas are ap-
plied consistently and in order. Each queue acts as a log. 
Unlike the write operation, there is no multi-cast needed for 
a read operation. The data can be read from any current 
replica in the IG. Since there are two types of operations - 
read and write, this leads to following depedencies of opera-
tions on a single table row: Read after Write: A read coming 
into the IG when a write oper tion is being performed. The 
read can be issued on any replica on which this write has 
been performed and committed. Read after Read: A read 
coming into the IG when a read operation is being per-
formed. The read can be issued on any replica. The TM 
sends a read request to only one replica. Write after Read: A 
write coming into the IG when a read operation is being 
performed. The writes can be issued on all the replicas ex-
cept on which this read is being performed. The write on 
this replica is issued after this read is done. Write after 
Write: A write coming into the IG when a write operation is 
being performed. The writes can be issued on all the repli-
cas except on which this write is being performed. The 
write on this replica (or replicas) is issued after this write is 
committed. TMs put each read/write request into the Update 
Queue at each replica in the IG. The Queue Manager at each 
replica must keep track of these dependencies while issuing 
the transactions from the Update Queue. This algorithm 
ensures that whenever a client issues a read operation, a 
consistent and correct value is read from the data store. 
   A study on RECOVERY ALGORITHM states 
that a failure is defined as a state in which a replica cannot-
service any client request at all. Partial failures are not con-

sidered. When a node (inside or outside the IG) fails, a 
check is run by any one TM on the network and on the IG. 
This checks if the IG continues to have the minimum num-
ber of nodes and establishes if more nodes can be added to 
the IG if it is at less than the maximum capacity. This is 
called reevaluation of the IG and is performed by the 
MTM. MTM sends the new contents of the IG map to the 
other TMs.[3] 
 More than one node can be added to the IG after ree-
valuation. The re-evaluation of IG does not mean that the 
system is down. While a node is getting added to an exist-
ing IG, a client operation can still be performed on the re-
maining nodes in the IG. If operation was a write, it can be 
performed on the new node added to the IG only when its 
addition to the IG is complete. The algorithm presented in 
section III allows for a recovery scheme to handle failures. 
This is elaborated by considering the following possible 
events. When node(s) inside the IG fails: The IG is re-
evaluated. If no node can be added to the IG and the IG has 
less than the minimum number of nodes, then the system is 
unavailable and does not service any client request until a 
new IG is formed. When node(s) outside the IG fails: The 
IG is reevaluated. When node(s) comes up: The IG (either 
existing or see if a new one can be formed) is re-evaluated. 
This node can become a part of the existing IG or forms a 
new IG. The above scenarios can be thought of as interrupts 
to the system. Each of which will lead to re-evaluation of 
the IG. Queue Manager: Each replica has a Queue Manager. 
As discussed earlier, the updates at each replica are first 
added to a queue, before applying to the respective table 
row. This queue called the Update Queue which ensures 
that the updates are applied in order of time. The queue also 
serves as a log of transactions which can be used when the 
replica comes up after failure. Let there be two replicas A 
and B. The version of the data file at B is V1 and that at A is 
V. If V1 is the most current version of the file, then B's up-
date queue would be empty. If it is not the most current ver-
sion of the file and suppose V is the most current version of 
the file then V1 would need, say, n updates to reach V or 
simply V = V1 + n. Now, suppose B fails and is down for m 
units of time. In this time, the version at A would advance 
from V to a new version V2. Say there were n1 updates 
done during this time. Now the current version at this time 
is V2 and V needs to have (n + n1) updates to become V2 
when B comes up. Now, the question to be answered is: 
From where would B get the updates after it comes up? To 
go to the version V1, it simply needs to de-queue all the 
updates in its update queue when it failed. Then to go to V2 
it needs to ask A to send it the modified tuples or all the 
tuples. This being an operation conducted infrequently, 
should not affect the performance of the system greatly. If 
this is done, then B does not need to use its update queue at 
all. The updates from the TM(s) would still be coming to 
the replica B and would be added to its update queue. So if 
B comes up at time t, then it asks any replica in the IG for 
the most updated data. Until the file at B comes to the cur-
rent version at the time t, the Queue Manager does not ap-
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ply the updates to the table at B. When the IG fails (which 
implies that no node outside the IG can be added to the IG 
after IG re-evaluation), there is no need for the transmission 
of updates from other nodes as the IG nodes would already 
be current when they come up. A more general form of this 
is when the entire system fails; each replica which is not 
current has to do what B does in the above example. But 
these types of failures would be unlikely. When a node(s) 
executing a data operation fails: Reads can be forwarded to 
another node with the current version of the replica. This is 
done by the TM, when it does not get any acknowledge-
ment from this node. In case of writes, the time stamp of the 
transaction is read from the front of the update queue and a 
local undo operation is executed on the corresponding row 
in the table. When a TM fails: Each Cloud node has one TM 
as a virtual machine instance and any number of virtual 
machine instances as nodes or replicas. When a TM fails, a 
new virtual machine instance is started and it has the same 
state as the failed TM. It continues processing from the time 
the TM had failed. So when the system is down when either 
all replicas are down or there is no functional IG in the net-
work (There might be current replicas active even without 
an IG in the network. This is a tradeoff between what the 
minimum size of an IG should be and also the maximum 
size. It is application dependent and it is best if the develop-
er selects it.) The algorithm is dynamic and reflects the cur-
rent state of the network. The size of the IG is a function of 
the number of working nodes. As long as the IG is up and 
running, the client finds the system available and reading 
consistent values. The client latency depends on the current 
size of the IG currently. Since the size of the IG is dynami-
cally dependent on the number of working replicas it is safe 
to say that the client latency also depends on the number of 
working replicas. Clients can get concurrent reads and 
writes which happen in parallel. When a replica in the IG 
fails, the IG is re-evaluated and possibly more replicas are 
brought into the IG hence the performance does not suffer 
for each IG replica failure. The replicas outside the IG 
(which are up and running) also keep on applying the up-
dates but the TM does not wait for acknowledgments from 
them. But they are not left behind as the updates are sent to 
them as well. The system keeps evolving and ensures im-
mediate consistency for the IG and eventual consistency for 
replicas outside the IG.[3]. 
 
4. Consistency Rationing 
 
 Consistency rationing as a new transaction paradigm, 
which not only allows to define the consistency guarantees 
on the data instead of transaction level, but also allows to 
automatically switch consistency guarantees at run-time. 
That is, consistency rationing provides the framework to 
manage the trade-off between consistency and costs in a 
fine-grained way. only two levels of consistency (session 
consistency, and serializability) and divide the data into 
three categories. Session consistency has been identified as 
the minimum consistency level in a distributed setting that 

does not result in excessive complexity for the application 
developer. Consistency Rationing in analogy to Inventory 
Rationing [9]. Inventory rationing is a strategy for inventory 
control where inventories are monitored with varying preci-
sion depending on the value of the items. Following this 
idea, the data is divided into three categories(A, B, and C), 
and treat each category differently depending on the consis 
tency level provided. The A category contains data for 
which a consistency violation would result in large penalty 
costs. The C category contains data for which (temporary) 
inconsistency is acceptable (i.e., no or low penalty cost ex-
ists; or no real inconsistencies occur). The B category com-
prises all the data where the consistency requirements vary  
over time depending on, for example, the actual availability 
of an item. This is typically data that is modified concur-
rently by many users and that often is a bottleneck in the 
system. [11] 
 
4.1 Adaptive Policies 
 

The Time policy switches between guarantee levels 
based on time, typically running at session consistency until 
a given point in time and then switching to serializability. 
These two first policies can be applied to any data item, 
regardless of its type. For the very common case of numeric 
values (e.g., prices, inventories, supply reserves), we con-
sider three additional policies. The Fixed threshold policy 
switches guarantee levels depending on the absolute value 
of the data item. Since this policy depends on a fixed thre-
shold that might be difficult to define, the remaining two 
policies use more flexible thresholds. The Demarcation pol-
icy considers relative values with respect to a global thre-
shold while the Dynamic policy adapts the idea of the Gen-
eral policy for numerical data by both analyzing the update 
frequency and the actual values of items.[11] 
 

5. Conclusions 
 
 Database Management Systems as a cloud service are 
engineered to run as a scalable, elastic service available on 
a cloud infrastructure. CloudDBMSs will have an impact 
for vendors desiring a less expensive platform for develop-
ment. In this paper, we presented the idea of DBMS in the 
cloud, the possibilities to be offered as one of the services 
offered by promising capability of cloud computing, that is 
to be a DBMS as a Service 
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