

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 1 Jan 2013 Page No. 229-233

A Survey on Cloud Database Management
Ms.V.Srimathi, Ms.N.Sathyabhama and Ms.D.Hemalatha

 1Department of MCA, SNS College of Technology, Coimbatore, 641035, India
 2Department of MCA, SNS College of Technology, Coimbatore, 641035, India

 3Department of MCA.SNS College of Technology, Coimbatore, 641035, India

Abstract
Recently the cloud computing has been gaining significant importance in almost all the fields. In this survey we discuss the
limitations and opportunities of deploying data management issues on cloud computing platforms. A cloud database man-
agement system is a distributed database that delivers computing as a service. The various issues related to security that has
to be offered by the Database as a service is studied. Various operations such as Scaling, provisioning, performance tuning,
privacy and backup. This study also reveals about consistency rationing and various adaptive policies.

Keywords Relational Cloud, Consistency, Privacy, DBMS

1. Introduction

 DBMS which is an integral and indispensable
component is outsourced is attractive because energy,
hardware and DBaas (Database as a Service) are
minimized. This survey deals with determining workload
for multi tenancy environment, elastic scalability and an
adjustable security scheme to run over encrypted data. This
survey also studies about the efficient and scalable ACID
transactions in the cloud by decomposing functions of a
database storage engine into transactional component and
Data Component.

2. Data Management in the Cloud
 Cloud computing is elastic in the face of changing
conditions. The payment is only for one needs and so
increased resources can be obtained to handle spikes in load
and then it can be released. It is desirable that a complete
software stack with a restricted API so that software
developers are forced to write programs that can run in a
shared-nothing environment and thus facilitate elastic
scaling [1].

2.1 Data management applications in the cloud

 The two largest components of the data management
market into the cloud are transactional data management
and analytical data management. The transactional data
management does not use a shared-nothing architecture.
The main benefit of a shared-nothing architecture is its sca-
lability [2]. It is hard to maintain ACID in the face of data
replication over large geographic distances. Applications
like airline reservations and employee data systems have
been the bread and butter of database industry - but these

applications need an RDMS and transaction processing ca-
pabilities. If these applications are to be deployed over the
Cloud, it is essential to come up with a scalable consistency
model over a scalable data store for the Cloud that supports
referential integrity and a transaction mix with a majority of
updates. This boils down to a problem of deploying data-
bases over the Cloud without compromising on any existing
features [3]. A good DBaaS must support database and
workloads of different sizes. A DBaaS must therefore sup-
port scale-out, where the responsibility for query processing
and the corresponding data is partitioned amongst multiple
nodes to achieve higher throughput. The workload-aware
partitioner uses graph partitioning to automatically analyze
complex query workloads and map data items to nodes to
minimize the number of multi-node transac-
tions/statements.[4]. The system design of a the Relational
cloud uses existing unmodified DBMS engine as the back-
end query processing and query nodes. Applications com-
municate with Relational Cloud using a standard connectiv-
ity layer such as JDBC. Relational Cloud runs the databases
with the same database server. A special driver is used to
communicate with the front end for maintaining the privacy
of the data. The database has one or more tables and an as-
sociated workload, defined as the set of queries and transac-
tions issued to it. The database is partitioned into one or
more pieces when the load exceeds the capacity of a single
machine[5].

2.2 Database Partitioning

 Relational Cloud uses database partitioning for two
purposes: (1) To scale a single database to multiple nodes,
useful when the load exceeds the capacity of a single ma-

http://www.ijecs.in/�

Ms.V.Srimathi International Journal Of Engineering And Computer Science 2:1 Jan 2013 (229-233)

Pa
ge
23

0

chine (2) to enable more granular placement and load bal-
ance on the back-end machines compared to placing entire
databases. The main notion of this partitioning is to minim-
ize the number of multi-node transactions. Relational Cloud
uses graph partitioning [6] to find ` balanced logical parti-
tions, while minimizing the total weight of the cut edges.
This minimization corresponds to find a partitioning of the
database tuples that minimizes the number of distributed
transactions. The output of the partitioner is an assignment
of individual tuples to logical partitions. Relational Cloud
now has to come up with a succinct representation of these
partitions, because the front-end’s router needs a compact
way to determine where to dispatch a given SQL statement.
Relational Cloud solves this problem by finding a set of
predicates on the tuple attributes. It is natural to formulate
this problem as a classification problem, where we are giv-
en a set of tuples (the tuple attributes are features), and a
partition label for each tuple (the classification attribute).
The system extracts a set of candidate attributes from the
predicates used in the trace. The attribute values are fed into
a decision tree algorithm together with the partitioning la-
bels. If the decision tree successfully generalizes the parti-
tioning with few simple predicates, a good explanation for
the graph partitioning is found. If no predicate-based expla-
nation is found (e.g., if thousands of predicates are generat-
ed), the system falls back to lookup tables to represent the
partitioning scheme.[4].

2.3 Resource Allocation

Resource allocation is a major challenge when design-
ing a scalable, multi-tenant service like Relational Cloud.
Problems include: (i) monitoring the resource requirements
of each workload, (ii) predicting the load multiple work-
loads will generate when run together on a server, (iii) as-
signing workloads to physical servers, and (iv) migrating
them between physical nodes. The monitoring and consoli-
dation engine includes Resource Monitor which captures a
number of DBMS and OS statistics from a running data-
base., a Combined Load Predictor which includes a devel-
oped a model of CPU, RAM, and disk that allows Kairos to
predict the combined resource requirements when multiple
workloads are consolidated onto a single physical server, a
Consolidation Engine to: (1) minimize the number of ma-
chines required to support a given workload mix, and (2)
balance load across the back-end machines, while not ex-
ceeding machine capacities.[4].

2.4 Privacy

 CryptDB, To implement adjustable security, our idea is
to encrypt each value of each row independently into an
onion: each value in the table is dressed in layers of increa-
singly stronger encryption, as shown in Figure 2. Each in-
teger value is stored three times: twice encrypted as an
onion to allow queries and once encrypted with homomo
phic encryption for integers; each string type is stored once,

encrypted in an onion that allows equalities and word
searches and has an associated token allowing inequali-
ties.[4].

3. Replication –Fault Tolerance

 A replica refers to a complete copy of the data. Fault-
tolerance and availability is ensured by replicating (or cach-
ing) frequently used data across multiple locations. The
downside of this is that co-ordination of the various replicas
is a cause for overhead, possibly reducing system availabili-
ty. This survey deals with elastic and scalable transaction
management when databases are deployed as a service over
the Cloud, without any loss of functionality. For DaaS (Da-
tabase as a Service), a scalable transaction management
paradigm is necessary; one which would work well even
when the majority of the transactions involve updates.[3].

3.1 Architectural Study

 A node (or a replica) is a virtual machine instance.
Each node consists of 1. Data Objects: Data Objects are
simply tables stored as .db files on Amazon S3. Each data
file contains a single. A table has many attributes and rows
(like a matrix). Each table row has a unique row number
and contains the timestamp of the transaction which per-
formed the last update. Data Objects are fully replicated
over the network. Each row in the table has an entry for the
last update time (or the value of the global time stamp of the
transaction which last updated this row). 2. Update Queue:
The Update Queue is the recovery mechanism present at
each node. The transaction requests from the Transaction
Managers (which are server-side virtual machine instances)
are added to the Update Queue at each replica. 3. Queue
Manager: The Queue Manager handles the Update Queue
and runs the transaction with the smallest time-stamp. After
successful commit, this transaction is dequeued. Other
components of the system include: Interest Group (IG):
An IG is a group of replicas in which all (or a majority of
replicas) have the most recent global timestamp. Transac-
tion Managers (TMs): The TM is a server-side virtual ma-
chine instance. A TM is very closely associated with the
replicas. One TM is designated as the Master TM (MTM).
Read/write requests from the client are received by the
TMs.[3]

3.2 Consistency Algorithm and Recovery Algorithm

 The client must submit an estimate of the transaction
workload initially. This is used to determine the number of
TMs and number of nodes (total number of virtual machine
instances) to be launched on each hypervisor [7]. After this
initial startup phase, the system scales with the transaction
workload following the pay-as-you-go model. Initially, all
the replicas start with the same version number- Version 0.
All the IG maps are reset. The replicas are randomly
grouped together into an IG by the MTM. The starting size

Ms.V.Srimathi International Journal Of Engineering And Computer Science 2:1 Jan 2013 (229-233)

Pa
ge
23

1

of the IG is specified by the application developer. The
MTM then sends its IG map to other TMs for synchroniz
ation. A client request can go to any TM, thus ensuring that
no TM is overwhelmed by more requests than it can service
(load balancing). The TM which receives the client write
request multi-casts the request to all the nodes in the IG.
The TM is required to wait for acknowledgment from only
the current replicas in the IG. The nodes in the IG forward
the write requests to the other replicas after sending their
acknowledgements to the TM. Inside the IG, the updates are
applied in parallel to the replicas. Hence, the amount of
time the client has to wait is bounded by the slowest replica
in the IG. This makes the write latency of the IG equal to
the write latency of the slowest replica in the IG currently.
Write latency of a replica for a TM is the difference be-
tween the time at which a TM sends an update to this repli-
ca and the time at which this TM receives the acknowled-
gement. Write latency is variable due to the dynamic nature
of the IG. Suppose the IG has m nodes and the write latency
of ith node is ti and the write latency of the IG is TIG. Then,
TIG = max (t1, t2, t3, …, tm).
The updates are performed on those replicas which are cur-
rently not 'in use'. These updates go into an Update Queue
at each replica. In each replica, the Queue Manager de-
queues the update with the smallest timestamp from the
Update Queue. If at least one of the rows affected by this
update is ‘in use’ then the update must wait in the Update
Queue. This ensures that the updates at all replicas are ap-
plied consistently and in order. Each queue acts as a log.
Unlike the write operation, there is no multi-cast needed for
a read operation. The data can be read from any current
replica in the IG. Since there are two types of operations -
read and write, this leads to following depedencies of opera-
tions on a single table row: Read after Write: A read coming
into the IG when a write oper tion is being performed. The
read can be issued on any replica on which this write has
been performed and committed. Read after Read: A read
coming into the IG when a read operation is being per-
formed. The read can be issued on any replica. The TM
sends a read request to only one replica. Write after Read: A
write coming into the IG when a read operation is being
performed. The writes can be issued on all the replicas ex-
cept on which this read is being performed. The write on
this replica is issued after this read is done. Write after
Write: A write coming into the IG when a write operation is
being performed. The writes can be issued on all the repli-
cas except on which this write is being performed. The
write on this replica (or replicas) is issued after this write is
committed. TMs put each read/write request into the Update
Queue at each replica in the IG. The Queue Manager at each
replica must keep track of these dependencies while issuing
the transactions from the Update Queue. This algorithm
ensures that whenever a client issues a read operation, a
consistent and correct value is read from the data store.
 A study on RECOVERY ALGORITHM states
that a failure is defined as a state in which a replica cannot-
service any client request at all. Partial failures are not con-

sidered. When a node (inside or outside the IG) fails, a
check is run by any one TM on the network and on the IG.
This checks if the IG continues to have the minimum num-
ber of nodes and establishes if more nodes can be added to
the IG if it is at less than the maximum capacity. This is
called reevaluation of the IG and is performed by the
MTM. MTM sends the new contents of the IG map to the
other TMs.[3]
 More than one node can be added to the IG after ree-
valuation. The re-evaluation of IG does not mean that the
system is down. While a node is getting added to an exist-
ing IG, a client operation can still be performed on the re-
maining nodes in the IG. If operation was a write, it can be
performed on the new node added to the IG only when its
addition to the IG is complete. The algorithm presented in
section III allows for a recovery scheme to handle failures.
This is elaborated by considering the following possible
events. When node(s) inside the IG fails: The IG is re-
evaluated. If no node can be added to the IG and the IG has
less than the minimum number of nodes, then the system is
unavailable and does not service any client request until a
new IG is formed. When node(s) outside the IG fails: The
IG is reevaluated. When node(s) comes up: The IG (either
existing or see if a new one can be formed) is re-evaluated.
This node can become a part of the existing IG or forms a
new IG. The above scenarios can be thought of as interrupts
to the system. Each of which will lead to re-evaluation of
the IG. Queue Manager: Each replica has a Queue Manager.
As discussed earlier, the updates at each replica are first
added to a queue, before applying to the respective table
row. This queue called the Update Queue which ensures
that the updates are applied in order of time. The queue also
serves as a log of transactions which can be used when the
replica comes up after failure. Let there be two replicas A
and B. The version of the data file at B is V1 and that at A is
V. If V1 is the most current version of the file, then B's up-
date queue would be empty. If it is not the most current ver-
sion of the file and suppose V is the most current version of
the file then V1 would need, say, n updates to reach V or
simply V = V1 + n. Now, suppose B fails and is down for m
units of time. In this time, the version at A would advance
from V to a new version V2. Say there were n1 updates
done during this time. Now the current version at this time
is V2 and V needs to have (n + n1) updates to become V2
when B comes up. Now, the question to be answered is:
From where would B get the updates after it comes up? To
go to the version V1, it simply needs to de-queue all the
updates in its update queue when it failed. Then to go to V2
it needs to ask A to send it the modified tuples or all the
tuples. This being an operation conducted infrequently,
should not affect the performance of the system greatly. If
this is done, then B does not need to use its update queue at
all. The updates from the TM(s) would still be coming to
the replica B and would be added to its update queue. So if
B comes up at time t, then it asks any replica in the IG for
the most updated data. Until the file at B comes to the cur-
rent version at the time t, the Queue Manager does not ap-

Ms.V.Srimathi International Journal Of Engineering And Computer Science 2:1 Jan 2013 (229-233)

Pa
ge
23

2

ply the updates to the table at B. When the IG fails (which
implies that no node outside the IG can be added to the IG
after IG re-evaluation), there is no need for the transmission
of updates from other nodes as the IG nodes would already
be current when they come up. A more general form of this
is when the entire system fails; each replica which is not
current has to do what B does in the above example. But
these types of failures would be unlikely. When a node(s)
executing a data operation fails: Reads can be forwarded to
another node with the current version of the replica. This is
done by the TM, when it does not get any acknowledge-
ment from this node. In case of writes, the time stamp of the
transaction is read from the front of the update queue and a
local undo operation is executed on the corresponding row
in the table. When a TM fails: Each Cloud node has one TM
as a virtual machine instance and any number of virtual
machine instances as nodes or replicas. When a TM fails, a
new virtual machine instance is started and it has the same
state as the failed TM. It continues processing from the time
the TM had failed. So when the system is down when either
all replicas are down or there is no functional IG in the net-
work (There might be current replicas active even without
an IG in the network. This is a tradeoff between what the
minimum size of an IG should be and also the maximum
size. It is application dependent and it is best if the develop-
er selects it.) The algorithm is dynamic and reflects the cur-
rent state of the network. The size of the IG is a function of
the number of working nodes. As long as the IG is up and
running, the client finds the system available and reading
consistent values. The client latency depends on the current
size of the IG currently. Since the size of the IG is dynami-
cally dependent on the number of working replicas it is safe
to say that the client latency also depends on the number of
working replicas. Clients can get concurrent reads and
writes which happen in parallel. When a replica in the IG
fails, the IG is re-evaluated and possibly more replicas are
brought into the IG hence the performance does not suffer
for each IG replica failure. The replicas outside the IG
(which are up and running) also keep on applying the up-
dates but the TM does not wait for acknowledgments from
them. But they are not left behind as the updates are sent to
them as well. The system keeps evolving and ensures im-
mediate consistency for the IG and eventual consistency for
replicas outside the IG.[3].

4. Consistency Rationing

 Consistency rationing as a new transaction paradigm,
which not only allows to define the consistency guarantees
on the data instead of transaction level, but also allows to
automatically switch consistency guarantees at run-time.
That is, consistency rationing provides the framework to
manage the trade-off between consistency and costs in a
fine-grained way. only two levels of consistency (session
consistency, and serializability) and divide the data into
three categories. Session consistency has been identified as
the minimum consistency level in a distributed setting that

does not result in excessive complexity for the application
developer. Consistency Rationing in analogy to Inventory
Rationing [9]. Inventory rationing is a strategy for inventory
control where inventories are monitored with varying preci-
sion depending on the value of the items. Following this
idea, the data is divided into three categories(A, B, and C),
and treat each category differently depending on the consis
tency level provided. The A category contains data for
which a consistency violation would result in large penalty
costs. The C category contains data for which (temporary)
inconsistency is acceptable (i.e., no or low penalty cost ex-
ists; or no real inconsistencies occur). The B category com-
prises all the data where the consistency requirements vary
over time depending on, for example, the actual availability
of an item. This is typically data that is modified concur-
rently by many users and that often is a bottleneck in the
system. [11]

4.1 Adaptive Policies

The Time policy switches between guarantee levels
based on time, typically running at session consistency until
a given point in time and then switching to serializability.
These two first policies can be applied to any data item,
regardless of its type. For the very common case of numeric
values (e.g., prices, inventories, supply reserves), we con-
sider three additional policies. The Fixed threshold policy
switches guarantee levels depending on the absolute value
of the data item. Since this policy depends on a fixed thre-
shold that might be difficult to define, the remaining two
policies use more flexible thresholds. The Demarcation pol-
icy considers relative values with respect to a global thre-
shold while the Dynamic policy adapts the idea of the Gen-
eral policy for numerical data by both analyzing the update
frequency and the actual values of items.[11]

5. Conclusions

 Database Management Systems as a cloud service are
engineered to run as a scalable, elastic service available on
a cloud infrastructure. CloudDBMSs will have an impact
for vendors desiring a less expensive platform for develop-
ment. In this paper, we presented the idea of DBMS in the
cloud, the possibilities to be offered as one of the services
offered by promising capability of cloud computing, that is
to be a DBMS as a Service

References
1. Daniel J.Abadi and New Haven .Data Management

in the Cloud: Limitations and Opportunities
2. S.Madden,D.DeWitt, and M.Stonebraker. Database

parallelism choices greatly impact scalability.

Ms.V.Srimathi International Journal Of Engineering And Computer Science 2:1 Jan 2013 (229-233)

Pa
ge
23

3

3. Database column blog.
http://www.databasecolumn.com

4. Rohan G. Tiwari, Shamkant B. Navathe and Gau-
rav J. Kulkarni, TOWARDS TRANSACTIONAL
DATA MANAGEMENT OVER THE CLOUD

5. Carlo Curino,Evan P.C.Jones ,Relational Cloud: A
Database-as-a-Service for the Cloud

6. F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D.
Wallach, M. Burrows,T.CChandra, A. Fikes, and
R. Gruber. Bigtable: A distributed storage system
for structured data. In OSDI, 2006.

7. G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20(1), 1998

8. “Hypervisor”, December 2004. [Online]. Availa-
ble:http://en.wikipedia.org/wiki/Hypervisor. [Ac-
cessed: Apr. 23, 2010

9. Andrew S. Tanenbaum and Maarten Van Steen.
Distributed Systems: Principles and Paradigms.
Prentice Hall, 2 edition, 2006

10. Edward A. Silver, David F. Pyke, and Rein Peter-
son. Inventory Management and Production Plan-
ning and Scheduling. Wiley, 3 edition, 1998

11. Building Database Applications in the Cloud A
dissertation submitted to the SWISS FEDERAL
INSTITUTE OF TECHNOLOGY ZURICH by
TIM KRASKA

12. BuyyaR, BrobergJ andGoscinskiA, “Cloud
computing Principles and Paradigms”, A Jon
Wiley & Sons, Inc. Publication, (2011).

13. FeinbergD, “DBMS as a Cloud Service”,
(2010),Gartner, Inc. and/or its Affiliates.

14. KelloggD, “DBMS in the Cloud: Amazon
SimpleDB”, http://kellblog.com/2007/12/18/dbms-
in-the-cloud-amazon-simpledb/

http://www.databasecolumn.com/�

