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Abstract: — In Many Real time application like sensors monitoring system, location based system and data integration are inexact in 

nature. It is difficult to extract frequent Item sets from these kind of application because of uncertainty. We study the problem of mining 

frequent itemsets from uncertain data under Possible Semantic Worlds (PSW). Uncertain database contain exponential large number of 

possible semantic worlds. We consider transactions whose items are associated with existential probabilities and give a formal definition of 

frequent patterns from uncertain data model.  

By observing that the mining process can be modelled as a Poisson binomial distribution, an algorithm was developed, which can 

efficiently and accurately discover frequent item sets in a large uncertain database. We are adopting mining algorithm which identifies 

Probabilistic Frequent Itemset (PFI) from evolving database. Traditional algorithms for mining frequent itemsets are inapplicable or 

computationally inefficient for uncertain database. Implementing incremental algorithm which can efficiently accurately discovered 

frequent item set in large uncertain database. 

Keywords: PFI, PWS, S-PMF.  

1. Introduction 

Nowadays, mass data is generated every minute. Data mining, 

which is to find useful information and patterns among large 

databases, has been studied popularly in databases analysis.  

Data mining which makes to analyse and learn uncertain 

database for pattern. There are many aspects in data mining 

field, such as retrieving association rules, classification, 

clustering, and estimation [2] [3]. In traditional databases, 

where the data is clear-cut (correct), those approaches have 

been considered for many years. But, in many applications we 

may find that the databases are uncertain. The locations of 

users obtained through RFID and GPS systems, for instance, 

are not correct due to evaluation errors. Customer purchase 

behaviours, as captured in supermarket basket databases, 

contain statistical information for predicting what a customer 

will buy in the future [6]. Integration and record linkage tools 

associate confidence values to the output tuples according to 

the quality of matching. In structured information extractors, 

confidence values are appended to rules for extracting patterns 

from unstructured data. Recently, uncertain databases have 

been proposed to offer a better support for handling imprecise 

data in these applications, where uncertainty is treated as a 

first-class citizen".  

Databases used in many important applications are often 

uncertain. For example, the Customer acquisition behaviours, 

as grab in supermarket basket databases, contain statistical 

information for predicting what a customer will buy in the 

future. In structured information extractors, confidence values 

are appended to rules for extracting patterns. In unstructured 

information to handle a large amount of uncertain data is 

recently developed. 

It is generally assumed that the items occurring in a transaction 

are known for certain. However, this is not always the 

occurrence. For detail; 

 In many functions the data is inherently noisy, such as 

data collected by sensors or in satellite images. 

 In privacy protection applications, artificial noise can 

be added intentionally. Finding patterns despite this 

noise is a challenging problem. 

By aggregating transactions by customer, we can mine patterns 

across customers instead of transactions. This produces 
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estimated purchase probabilities per item per customer rather 

than certain items per transaction. 

Considering in Uncertain transaction database all tuple are 

mutually independent. Thus, the decision by customer A has no 

influence on customer B. This expectation is reasonable in real 

world applications[10][15]. This can be justified by the 

assumption that the items are observed independently. In this 

case, the probability of a world w is given by 

 

              (1) 

Any query evaluation algorithm for an uncertain database has 

to be correct under PWS. That is, the results produced by the 

algorithm should be the same as if the query is evaluated on 

every possible world. Although PWS is perceptive and useful, 

querying or mining under this notion is costly. This is because 

an uncertain database has an exponential number of possible 

worlds. Performing data mining under PWS can thus be 

technically challenging. In fact, the mining of uncertain data 

has recently attracted research attention. For example, in 

efficient clustering algorithms were developed for uncertain 

objects; in and naive Bayes and decision tree classifiers 

designed for uncertain data were studied. 

In this paper, incremental mining algorithms is used  for 

finding frequent itemsets evolving certain databases. Our 

algorithms can be applied to two important uncertainty models: 

attribute uncertainty  and tuple uncertainty, where every tuple is 

associated with a probability to indicate whether it exists. The 

frequent item sets discovered from uncertain data are naturally 

probabilistic, in order to reflect the confidence placed on the 

mining results for a Probabilistic Frequent Item set (PFI) 

extracted. A PFI is a set of attribute values that occurs 

frequently with a sufficiently high probability. The support 

probability mass function (s-pmf) for the PFI. This is the pmf 

for the number of tuples (or support count) that contain an item 

set. Under PWS, a database induces a set of possible worlds, 

each giving a (different) support count for a given item set. 

Hence, the support of a frequent item set is described by a pmf. 

 A simple way of finding PFIs is to mine frequent patterns 

from every possible world, and then record the probabilities of 

the occurrences of these patterns. This is impractical, due to the 

exponential number of possible worlds. To solve this, some 

algorithms have been recently developed to successfully 

retrieve PFIs without instantiating all possible worlds[7]. These 

algorithms can verify whether an item set is a PFI in O(n
2
) time 

(where n is the number of tuples contained in the database). 

The s-pmf of a PFI can be captured by a Poisson binomial 

distribution, for  attribute and tuple-uncertain data. The model 

based algorithm can verify a PFI in O(n) time, and is thus more 

suitable for large databases. The algorithm can be used to mine 

threshold-based PFIs, whose probabilities of being true 

frequent item sets are larger than some user-defined threshold. 

It takes very less time to find all PFI. 

 1.1 Mining evolving databases  

 In real time the important problem is maintaining mining 

results for changing, or evolving, databases. The type of 

evolving data that we address here is about the appending, or 

insertion of a batch of tuples to the database. Tuple insertion is 

common in the applications that we consider. For example, a 

GPS system may have to handle location values due to the 

registration of a new user; in an online marketplace application, 

information about new purchase transactions may be appended 

to the database for further analysis. Notice that these new 

tuples may induce changes to the mining result[12]. A 

straightforward way of refreshing the mining results is to 

reevaluate the whole mining algorithm on the new database. 

This can be costly, however, when new tuples are appended to 

the database at different time instants. In fact, if the new 

database D is similar to its older version, D, it is likely that 

most of the PFIs extracted from D remain valid for D
+
. Based 

on this perception, the developed mining algorithm uses the 

PFIs of D to derive the PFIs of D
+
, instead of finding them 

from scratch. In this paper, the adopting mining algorithm to 

study and discovers the PFIs. The algorithm discovers PFIs, 

which can be extended to handle evolving data. As the 

experiments show, when the change of the database is small, 

running the mining algorithm on D
+
 is much faster than finding 

PFIs on D
+
 from scratch. In an experiment on a real data set, 

the mining algorithm addresses a fivefold performance 

improvement over its non counterpart. 

 To summarize, an algorithm was adopting, which can reduce 

the amount of effort of scanning the database for mining 

threshold− based PFIs. The algorithm can support for attribute 

and tuple uncertainty models. The comparison has made 

incremental mining and Apriori approach is presented. 

Experiments on the real data set reveal that the adopting 

incremental mining method significantly improves the 

performance of PFI discovery, with a high degree of efficiency 

2. RELATED WORK 

Mining frequent item sets is an important problem in data 

mining, and is also the first step of deriving association rules. 

Hence, many efficient item set mining algorithm(e.g., Apriori  

and FP− growth) have been proposed. While these algorithm 

work well for databases with correct values, it is not clear how 

they can be used to mine probabilistic data. Here an algorithm 

for extracting frequent item sets from uncertain databases was 

developed. Although the algorithm is developed based on the 

Apriori framework, they can be considered for supporting other 

algorithm (e.g., FP−growth) for handling uncertain data. For 

uncertain databases, Aggarwal et al. and Chui et al developed 

efficient frequent pattern mining algorithm based on the 

expected support counts of the patterns. However, Bernecker et 

al. Sun et al. and Yiu et al. found that the use of expected 

support may render important patterns missing. Hence, they 

proposed to compute the probability that a pattern is frequent, 

and introduced the notion of PFI. In dynamic programming 

based solutions were developed to retrieve PFIs from attribute 

uncertain databases. However, their algorithm compute 

probabilities, and verify that an item set is a PFI in O(n
2
) time. 

the algorithm avoid the use of dynamic programming, and are 

able to verify a PFI much faster in O(n) time. Zhang et al. only 

considered the extraction of singletons (i.e., sets of single 

items), the solution discovers patterns with more than one item. 

Recently, Sun et al. developed an threshold based PFI mining 

algorithm. However, it does not support attribute uncertain data 

considered in this paper other works on the retrieval of frequent 

patterns from imprecise data include, which studied frequent 

patterns on noisy data; which examined association rules on 

fuzzy sets; and which proposed the notion of a “vague 

association rule.” However, previous algorithm are not suitable 

for the uncertainty models. For evolving databases, A few 

mining algorithm that work for data have been developed. For 

example, the Fast Update algorithm (FUP) was proposed to 

efficiently maintain frequent item sets, for a database to which 

new tuples are inserted. the mining framework is inspired by 

FUP. The FUP2 algorithm was developed to handle both 

addition and deletion of tuples. ZIGZAG also examines the 

efficient maintenance of maximal frequent item sets for 
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databases that are constantly changing. In a data structure, 

called CATS Tree, was introduced to maintain frequent item 

sets in evolving databases. Another structure, called CanTree, 

arranges tree nodes in an order that is not affected by changes 

in item frequency[4][6]. The data structure is used to support 

mining on a changing database. To the best knowledge, 

maintaining frequent item sets in evolving uncertain databases 

has not been examined before. The proposed algorithm can 

also support attribute and tuple uncertainty models 

3. PROBLEM DEFINITION 

Let V  be a set of items. Here, we acquire a database D contains 

n tuples, or transactions. Each transaction, tj is associated with 

a set of items taken from V. Each item v  V exists in tj with an 

existential probability P(v  tj)  (0,1], which denotes the 

chance that u belongs to tj . Under Possible  Semantic Worlds, 

D generates a set of possible worlds W. In each world subset of 

attributes from each transaction. The sum of all possible world 

is one, and the no of possible worlds is exponentially 

large[10][5]. The goal is to discover frequent patterns without 

expanding D into possible worlds. Each transaction is 

associated with a set of items and an existential probability P(tj) 

 (0,1]. Again, the number of possible worlds for this model is 

exponentially large. The problem of mining approximate 

probability frequent itemsets and support for every item 

described in below Table 1 summarizes the symbols used in 

this paper.  

3.1 Support of I 

In uncertain transaction database, the support of an item or 

itemset cannot be unique value, but rather, must be represented 

by a discrete probability distribution. 

 DEFININTION 1: In uncertain database T and the set W of 

possible worlds of T, the support probability P(i) of an itemset 

X is the probability that X has the support i. 

       (2) 

Where S(Wj,I) is the support of X in world Wj 

 

Intuitively, P(i) denotes the probability that the support of i. 

The support probabilities associated with an itemset I for 

different support values form the support probability 

distribution of the support of X.  

Definition1: The probabilistic support of an itemset X in an 

uncertain transaction database T is defined by the support 

probabilities of  X  (P(X)) for all possible support values I  

{0,….|T|}. This probability distribution is called support 

probability distribution. 

3.2 Probability Frequent Item Sets 

Let S(wj, I) be the support count of I in possible world wj. 

Then, the probability that s(I) has a value of I, denoted by 

P(i),is calculated from Equation (2). Hence, P(i)( i =1,…,n ) 

form a probability mass function (pmf) of S(I), where n is the 

size of database D. Now, let minsup  (0, 1] be a percentage 

value, which is generally used to define minimal support in a 

deterministic database. An item set I is said to be frequent in a 

database D if s(I) ≥ msc(D), where msc (D) = minsup x n is 

called the minimal support count of D. For uncertain databases 

the frequentness probability of I, denoted by Pfreq(I) is the 

probability that an item set is frequent. Notice that Pfreq(I) can 

be expressed as 

           (3) 

Using frequentness probabilities, the proposed algorithm can 

determine whether an item set I is frequent. I is a Threshold-

based PFI if its Frequentness probability is larger then some 

user-defined threshold. If Pfreq(I) ≥ minprob. We call minprob 

the frequentness probability threshold. Here the minimum 

probability (minprob) is the frequentness probability threshold. 

 

Table 1 

Summary of  Notation 

 

4. Estimating S-PMF 

In this section we estimate the s-pmf s(I) of item set I plays an 

important role in determining whether I is a PFI. However, 

directly computing s(I) can be expansive.  An interesting 

observation about s(I) is that it is essentially the number of 

successful Poisson trials[13]. To explain, let Xj
I
 be a random 

variable, which is equal to one if I is a subset of the items 

associated with transaction tj,  or zero otherwise. Given a 

database of size n, each I is related with random variables 

, , ,all tuples are discrete. Therefore, these n 

variables are discrete, and they represent n Poisson trials. 

Moreover,   follow a Poisson binomial 

distribution. Next we evaluate relationship between X
I
 and 

P
I
(i), P

I
(i) = P(X

I 
= i).This is simply because X

I
 is the number 

of items that I exists in the database. Hence, the s-pmf of I, I.e., 

Notation Description 
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P
I
(i) is the pmf of X

I
, a Poisson binomial distribution. Using (5) 

we can write (2), which computes the frequentness probability 

of I,   

Pfreq(I) =  

                = P(  msc(D))             (4) 

Therefore, if the cumulative distribution function (cdf) of  X
I 
 is 

known, Pfreq(I) can also be evaluated. Next, another approach to 

this cdf, in order to compute Pfreq(I)  efficiently. 

A. Approximating s-pmf  

we can express Pfreq(I) as  

      Pfreq(I) = 1- P( X
I 
≥ msc(D) -1),            (5) 

For notational convenience, let P
I
j be P(I  tj). Then, the 

expected value of X
I
.  In D, denoted by µ

I
, can be computed by  

                         (6)   

Since a Poisson binomial distribution can be well approximated 

by a Poisson distribution [8], (5) can be written as 

Pfreq(I) 1- F(msc(D)-1, µ
I
), (7) 

Where F is the cdf of the Poisson distribution can be well 

approximated by a Poisson distribution with mean µ
I
 , i.e.,  

F(msc(D)-1, µ
I
) = 1- ,           (8) 

expressed using the incomplete gamma function  

 
To estimate the Pfreq(I), we can compute  µ

I
 by scanning D once 

and summing up P
I
j
  
’s for all tuples tj in D. Then, F(msc(D)-1, 

µ
I
), is evaluated and approximate is estimated from equation .  

Theorem 1: Pfreq (I), if approximated by (7), increase 

monotonically with µ
I
. 

Proof: The cdf of a Poisson distribution, F(I,µ) can be written 

as 

   

Since minsup is fixed and independent of µ, let us examine the 

partial derivate w.r.t. µ 

 =  

 

 
  

Thus, the cdf of the passion distribution F(i,µ) is monotonically 

decreasing w.r.t. µ when I is fixed. 

Consequently, 1-F(i-1,µ)increase monotonically with µ. 

Theorem1follow immediately by substituting i, i=msc(D).From 

above theorem states that the higher value of µ
I
, the higher is 

the chance that I is a PFI.  

5.  THRESHOLD-BASED PFI MINING 

In an uncertain database, it is difficult quickly determine 

whether an itemset I is a threshold-based PFI? Answering this 

question is critical part. We develop a simple method of testing 

whether I is a threshold-based PFI, without computing its 

frequentness probability.  

 5.1 PFI Testing 

 Given the values of minsup and minprob, we can test 

whether I is a threshold-based PFI, in three steps: 

Step1. Find a real number µm satisfying the equation: 

  From Equation 

(9) can be solved efficiently by employing numerical methods. 

Step2. Use Equation (6) to compute µ
I
. Notice that the database 

D has to be scanned once. 

Step3. If µ
I 
≥ µm, we conclude that I is a PFI. Otherwise, I must 

not be a PFI. 

 To understand why this works, first notice that the right hand 

side of Equation( 9) is the same as that of Equation (7), an 

expression of frequentness probability. Essentially, Step 1 finds 

out the value of µm that corresponds to the frequentness 

probability threshold (i.e., minprob). In Steps 2 and 3, if µ
I 
≥ 

µm ,Theorem 1 allows us to deduce that Pfreq(I) > minprob. 

Hence, these steps together can test whether an itemset is a PFI. 

In order to verify whether I is a PFI, once µm is found, 

we do not have to evaluate Pfreq(I). Instead, we compute µ
I
 in 

Step 2, which can be done in O(n) time. This is a more scalable 

method compared with solutions in, which evaluate Pfreq in 

O(n
2
)time. Next, we study how this method can be further 

improved. 

5.2 Improving the PFI Testing Process 

Database D has to be scanned once to obtain µ
I
 , for every item 

set I. This can be costly if D is large, and if many item sets 

need to be tested. For example, in the Apriori algorithm [6], 

many candidate item sets are generated first before testing 

whether they are PFIs. Next the process of how the PFI testing 

can still be carried out without scanning the whole database 

was explained. 

Let µ
I
 = , where Essentially, µ

I
 is the 

“partial value” of µ
I
 ,which is obtained after scanning 1 tuples. 

Notice that µ
I
 j = µ

I
. Suppose that µm has been obtained from 

(11). 

Corollary 1. An item set I cannot be a PFI if there exist  
 

 
 such that  

 < . 

The above equations can be used to improve the speed of the 

PFI testing process[11]. Specifically, after a tuple has been 

scanned, The algorithm checks whether the s-pmf value of the 

item set exceeds the threshold value; if so, it immediately 

conclude that I is a PFI. After scanning n- µm or more tuples, 

we examine whether I is not a PFI, by using  

Corollary 1: These testing procedures continue until the whole 

database is scanned, yielding μ
I
, Then, the algorithm execute 

Step 3 (Section A) to test whether I is a PFI 

6. Incremental Mining Framework 

Now we present evolving database D contains n tuples. D is 

also called old database. A small uncertain database d, which 

contains  tuples, will be appended to D. d is called delta 

database. Let new database be D
+
 = D + d, which contains n

+
 = 

n +   tuples. Our goal is to maintain all threshold-based PFIs 

of D
+
, under the same values of minsup or  minprob. Notice 

that the minimal support count changes with the size of 

database[10]. We assume that the complete set of PFIs and 

some essential support information (e.g. the s-pmfs, or the 

expected support values) of them from the old database are 

saved on disk. We using an incremental mining algorithm for 

maintaining frequent itemsets in evolving databases with 

improper data, called uFUP. Based on the framework, we 
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maintain uncertain database with help of algorithms called 

uFUP respectively. Note that the algorithms support both 

attribute and tuple uncertainty models. 

 

 

   

 

 

 

 

 

 
 

Fig 1: System Architecture 

 

Our incremental mining framework (Figure -1) is a candidate 

set generation and test" approach which is based on the 

Apriori. It is a bottom-up framework, which generates k-PFIs 

with ( ) PFIs. The algorithm contains several iterations. 

Starting from k = 1, there are three steps in each iteration. 

Step1: Candidate Generation, Size-k candidates are generated 

in this step. The algorithm will be stopped when there are no 

new candidates. In the first iteration, the generation is based on 

the old PFIs and the delta database. When k > 1, the generation 

is based on (K-1)PFIs.  

Step2: Candidate Pruning, A pruning method is used to reduce 

the size of candidates by scanning the delta database. The 

target is to obtain a small set of candidates.  

Step3: PFI Testing, All remaining candidates are tested to get 

the k-PFIs. We have mentioned that re-evaluating mining 

algorithms on the new database directly is inefficient, since it 

would calculate many results which have been calculated 

before. And, it costs much time to scan the new database when 

testing PFI. Notice that in step 1 and 2, only d and the PFIs of 

Dare needed. Since these pieces of information are relatively 

small in size (compared with D or D
+
 ), they are usually not 

very expensive to evaluate. step 3 involves deriving the s−pmf 

s of item sets, with the use of D
+
 , and is thus more expensive 

than other phases. If step 2 successfully removes a lot of 

candidates from consideration, the cost of executing step 3 can 

be reduced. The above discussion is formalized in the 

Algorithm-1, which uses the databases D and d, as well as the 

set of PFIs F
D
 collected from D (e.g., using the method of [6]). 

The output of the algorithm is a set F
+
 of PFIs for D

+
, 

 and F
+ 

is the set of „k− PFIs‟ for D
+
 

Let  be a set of size− k candidates found from D
+
. Initially 

k=1. The algorithm generates  (Step 1). In the kth iteration, 

first the algorithm removes candidate item sets that cannot be 

k− PFIs, from 
 
(Step2).if  is not empty, the algorithm 

performs testing on these candidates, in order to find out the 

true k− PFIs (i.e., ,) Step 3 generates size (k+1)−candidate 

item sets by using the k− PFIs. The whole process is repeated 

until no more candidates are found, The algorithm takes D, d, 

minsup, minprob as inputs and produces the output as a set of 

Probabilistic Frequent item sets  (PFIs) in the function F, which 

is given as follows 

Algorithm uFUP 

 uFUP runs several iterations. Each iteration contains three 

steps. Starting from k = 1, Candidate Generation generates 

which is size-k candidates of D
+
 (Lines 3 { 4 and 12). The 

algorithm is stopped when | | = 0. Otherwise, Candidate 

Pruning is adopted to prune candidates (Line 6). Finally, k-

PFIs (  ) are retrieved from C
+

k by PFI Testing (Line 8).We 

can see that the old PFIs F
D
 and the delta database d are needed 

in every step. However, only PFI testing step requires scanning 

the old database D. 

Algorithm uFUP 

Input: D, d, F
D
, minsup, minprob 

Output: Exact PFIs of D
+
: 

 
// is 

set of k-PFIs 

1.begin 

2. = 0; 

3.  

4. ; while| |  do; 

5.  

6.  then 

7.  

8.  

9. Break; 

10.  

11. ; 

12.  

13. end 

7. RESULT 

Now the experimental results on the data set, called road safety 

accidents. This data set is obtained from http://data.gov.uk/. 

Provided by coroners in England and Wales and procurators 

Fiscal in Scotland for the period of 1/1/1979 - 31/12/2013. The 

data are obtained from the “Great Britain (England, Scotland, 

Wales),” which are filled out by a police officer for each traffic 

with STATS 19 form accident occurring on a public road in 

Great Britain . The data set contains 1,40,184 accident records, 

with a total of 457attribute values. On average, each record has 

40 attributes. The algorithm uses the first 10k tuples as the 

default data set as its input. The default value of minsup is 20 

percent. To test the mining algorithm, it uses the first 10k 

tuples as the old data base D, and the subsequent tuples as the 

delta database d. The default size of d is 5 percent of D, it 

considers both attribute and tuple uncertainty models. The 

default value of minprob is 0.4.In the results presented, minsup 

is shown as a percentage of the data set size n. Notice that 

when the values of minsup or minprob are large, no PFIs can 

be returned; it do not show the results for these values. The 

experiments were carried out on the Windows XP operating 

system, on a machine with a 2.66GHz Intel Core 2 Duo 

processor and 4 GB memory. The programs were written in 

Java, for data set is maintained by Wamp Server written 

queries operation to get probability values, MySQL java 

connector used for connections and compiled in Net beans. The 

proposed algorithm is implemented under the java runtime 

environment. The algorithm extracts the probabilistic frequent 

item sets within a fraction of seconds 

Data 
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Candidate 

Generation 

Candi

date>

0 
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ate 
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PFIs 
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Comparison on uFUP vs. Apriori: 

Next compare uFup and Apriori which both yield PFIs. The 

given Figure 2 shows that uFUP is faster than Apriori over 

different minsup values. minsup is taken on the X-axis and 

runtime is taken on the Y-axis. On increasing the minsup value 

the runtime decreases. 

0

0.5

1

0.2 0.4 0.6 0.8

R
u

n
 t

im
e

minsup

uFup APM

 
Figure 2. Comparison On Ufup Vs. Apriori(minsup) 

 

8.  CONCLUSION AND FUTURE WORK 

In this paper, we have studied the problem of mining frequent 

itemsets from uncertain databases. We adopting an algorithm to 

retrieve PFIs using model based approach for incremental 

uncertain databases. Model-based method calculates the s-pmf 

of an itemsets, in order to find PFIs. This method can 

efficiently extract threshold-based PFIs. It also supports 

attribute and tuple uncertainty. We used approximate methods 

to evaluate frequentness probabilities efficiently. Then, we 

adopting an incremental mining framework for retrieving 

threshold based PFIs from incremental uncertain databases. 

Based on this framework, we proposed an exact incremental 

mining algorithm, which identifies the complete set of PFIs 

when new tuples are being inserted into the databases. The 

experimental results show that our incremental mining 

algorithms are efficient and effective. 

 

8.1 FUTURE WORK 

We will also study the other method to model the support 

probability mass function, such as normal distribution, which is 

a common distribution. On the other hand, sampling can also 

be used to retrieve probabilistic frequent itemsets. The main 

challenge of the sampling method is how to balance the 

efficiency and accuracy, and how to give an appropriate 

theoretical error found. 
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