

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 4 Issue 3 March 2015, Page No. 11119-11125

Gayathri Kandasamy Sengottaiyan, IJECS Volume 4 Issue 3 March, 2015 Page No.11119-11125 Page 11119

Memory Management In C++ And Java

Gayathri Kandasamy Sengottaiyan

gayathri.sengottain@gmail.com

Professor: Tarik El Taeib

teltaeib@my.bridgeport.edu

University Of Bridgeport -Computer Science

ABSTRACT

Memory management is basic for all languages because it is the important factor to determine the efficiency of the

language. Language like Java have own garbage collector hence the programmer no need to do memory management. But in

C++ the programmer has to release the memory through new and delete functions. In this paper, we are going to discuss how

the memory is managed in both the languages and what are all the issues are there in memory in both the languages.

Keywords: Call stack, Activation Record, Smart Pointer and Garbage Collector

1.INTRODUCTION

Memory management in C++ and Java. Both the

program has memory management techniques. This paper

compare the differences between their memory management

approach and garbage collectors. Basically C++ does not

have efficient garbage collector but it has some means to

achieve this through smart pointer, RAII. Then the paper

will analyses the issues in garbage collector. To define the

memory function we should understand about the call stack,

this is very important for every programming language.

Every program has function the main job of the function has

to return the value to the main function the main function

will return value to the memory about the status. So call

stack has to be maintained throughout the program. This

paper will discuss how call stack is works in C++ and Java.

Another memory in the system which is most powerful and

large area of memory has been hold by this memory called

heap memory. When the program needs memory as a block

it will be allocated from the heap memory by operating

system. This will be more efficient than stack memory but it

should be used efficiently to prevent deadlock condition.

Both C++ and Java uses dynamic memory allocation to use

heap memory, this paper also analyses how this heap

memory is used by the C++ and Java. Here the smart

pointer and garbage collector plays a major role.

2.MEMORY MODEL

Before discuss about each type of memory we will have

brief note to know what are the memory used by these

languages and their purpose of using the particular memory

for particular task.

2.1.CODING AREA

The area where all the code will be loaded before the

execution.

2.2.STACK

This is also called execution stack after loading

execution will be done here like all the computation work,

function call, recursive call etc.

2.3.HEAP

This is dynamic memory allocation this is a large

pool of memory so all the objects will be reside here.

3.CALL STACK

Call stack is the memory where the code of the program

will be stored and starts the execution then returns the value

if it has done its work. The call stack is also known by the

"Execution Stack", "Machine Stack"[4]. But it will be simply

referred as "Stack". The subroutine is alive unless it knows

where the value should be returned or where the control to

be transferred after execution. In order to full fill it task the

call stack has to keep track of each function or task and the

call stack will be monitoring for all the subroutine which

are in the stack. Operation of the stack is "push" and "pop".

So the subroutine has to push the address when it want to

perform its task and take out the address when it has done

its task. The important function of the call stack is maintain

the address to retain the function control as it is mentioned

above the address can be stored indifferent ways. But most

http://www.ijecs.in/

Gayathri Kandasamy Sengottaiyan, IJECS Volume 4 Issue 3 March, 2015 Page No.11119-11125 Page 11120

convenient way is to store on same task where the program

function is loaded for execution, this will pay more benefit

like recursion function will be done more easily since it has

the address on the same location where the function resides.

All the function are reside in the "stack frame" it is also

called as "Activation Record". Let see how this activation

record work for different function.

3.1ACTIVATION RECORD

Activation record has the information which is needed

for the execution is placed on the stack. The information is

known as "Activation Record". This record will be allocate

the memory for the function fromtop to bottom. As soon as

the computation is done for the function or "method call",

the memory allocated for this particular record will be

destroyed. For example we will see simple function call how

it is allocated in the "frame".

voidrkr()

{

ga();

}

voidga()

{

dr();

}

void gr()

{

gk();

}main(){gk();}[4]

This shows

flow of call in

stack last in

first out

FIG1:Memory allocation diagram of above program

The "call Activation Record" contain some of the

information which need for the proper execution

"RV" this is return value after execution it return s

control to the specified location sometimes value.

"RA" this in turn will return the address of the function

that is location of the control where it return after execution.

when the program starts suppose if you take the above

example the program will call the function "rkr" then the

stack pointer address will be "1290" when it finish the

execution it return to "ga" function so it return the address

to stack pointer "1291" now the pointer will points to "ga".

Till then we have seen about the activation record at

function level next thing we are going to see how the

activation record going to handle the function attributes that

is variables.

In all the programming language we are talking about

the scope of the variable we know how the scope is working

but in activation record how it detects and how it allow as to

have a two different variable with same name in two

different function.

To do this task the "stack" is having something calls

"scope activation record" this holds two different type of

information, information about the local variable and the

"static Link " information which is a pointer for the "SAR" it

gives the information where the scope of the variable ends

and how to access the global variable[7].

Let us see through this example code

voidrkr()

{

int j=8;

{

i=9;

j=14;}[7]

\

FIG2:Diagram shows the variables in memory

4.STACK IN C++

When the program starts its execution the activation

record will be created in the stack inorder to store the

variables and method to compute. The activation record

contains values of the variable, return value of the function,

register's content. While the function has called it has been

interrupted by another function. But the function's job has

not finished so it need some memory to store its address on

the other hand some data structure. That is "stack" functions

are invoked the way it interrupted and it has been

"AR" for gk

@1293

@1292

"AR" for dr

@1291

"AR" for ga

"AR" for rkr

@1290

14j

9i

8j

SL

Gayathri Kandasamy Sengottaiyan, IJECS Volume 4 Issue 3 March, 2015 Page No.11119-11125 Page 11121

manipulated during the run time "so it is called Run time

stack". The most advantage in stack is "object on stack are

fully managed by the compiler" the programmer no need to

allocate and de allocate memory. Since the memory is

managed by the compiler the object which has the scope or

in other words which know its life time can only be in stack.

"In fact every object has a static size which is known at

compile time (determined using the sizeof operator). As a

result, every object can be placed on the stack. But this does

not mean that all memory requirements for this object can

be satisfied by the stack: if you place a string on the stack,

the implementation of the string would need to allocate

memory from the heap to full fill it’s duty."

Let see how the call stack is utilized by the C++. This

has explained with the following example C++ code

int main(){

 int a=3;

 rkr(a);

 cout<<endl;

}

Void rkr(int x){

 cout<<ga(x+1);

}

Intga(int p){

 int q=gk(p/2);

 return 2*q;

}

Intgk(int n){

 return n*n+1;

}[7]

p4

 Q B"AR" for ga

x3

 A"AR" for rkr

 a3 os"AR" for

main

FIG3: Activation Record of above program

 5. CALL STACK IN JAVA

Like in C++ java is also using the call stack to load the

run able subroutine. java is fully object oriented so it have

several class . In C++compiler will be responsible for stack

allocation, here it takes care by "Java Virtual Machine

(JVM)". The Java will load the corresponding byte code

which is a run able code and it allocate memory as

structured memory. Several run time area is there in "JVM".

Here we are going to see about the java stack.

java stack consider all the method as a thread and it will

do "pop" an "push" operations on stack. The thread which is

running on the stack is "current method" of the "current

class". The thread will compute with the local variable or

other member with the current frame. Java stack will

“push" the frame in to stack when the thread call the

method. This method can either completes the operation by

returning the value or control which states it completes

normally, if it throws exception then it turns "abrupt

completion". In either way after completion the

corresponding stack memory will be deleted. Unlike the

stack in C++ here the memory need not to be contiguous. It

is based on the programmer they are allowed to specify the

size of the stack.

java stack has three parts "local variable", "operand

stack", "frame data"

5.1LOCAL VARIABLE

It has "zero size array of words" it will store value of all

the data type, references and return address as a single

entry in the array. Since it is a char array it will consider

everything as a char so before storing in to array value of

float, double will be converted in to integer and then it will

be stored in the array.

"class Example3a {

public static intrunClassMethod(inti, long l, float f,

double d, Object o, byte b) {

return 0;

 }

publicintrunInstanceMethod(char c, double d, short s,

boolean b) {

return 0;

 }

}"[7]

This is an example program how the local variable of

the frame get stored. Here the index are used to retrieve the

variable. This is well defined in the following picture.

Gayathri Kandasamy Sengottaiyan, IJECS Volume 4 Issue 3 March, 2015 Page No.11119-11125 Page 11122

[7]

 FIG4: stack of class method and instance

method memory picture

5.2.OPERAND STACK

This is also create "array of words" like local variable

but it will not access by its "indices", it will do "push" and

"pop" operation in the stack.

Just like the local variable it will also convert the

int,float,double values to integer before pushing in to the

operand stack."JVM" uses the operand stack as the work

space it will pop the variable from the stack and it again

push the result in to the stack. Let see this through following

code

"iload_0 // push the int in local variable 0

iload_1 // push the int in local variable 1

iadd // pop two ints, add them, push result

istore_2 // pop int, store into local variable 2"

[4]

 FIG 5:operation of JVM stack

5.3.FRAME DATA

If the data is constant pool of information than the frame

data is used to refer the data, it use pointer for the frame to

access the data. The data types, address and all type of

references will be like symbols. So frame data will assist the

virtual machine to complete the stack operation if the stack

completes the execution normally it will resume the current

method from the stack and it will make the pointer to point

the register for further information and makes it to

complete the method. If it returns the value make it store in

the operand stack of the current method.

6.DYNAMIC MEMORY MANAGEMENT

We shall discuss how the dynamic allocation works in

C++ and Java. Since this is most important form of memory

it should be used efficiently in order to avoid shortage of

memory. Here we are going to discuss how the garbage

collector is working in C++ and Java. As it said before

heap is large pool of memory which is slower than stack but

it is an efficient since the value reside here long time than in

the stack.

7.DYNAMIC MEMORY MANAGEMENT IN C++

 The Dynamic memory is achieved using pointers

let us see the brief introduction about the pointers. In the

dynamic memory we are not determine the size of the

memory at compile time rather by run time. Here only

reference of the variable will be present since the memory is

dynamic.

Pointer is the concept used for dynamic allocation in

C++, this holds the address of another variable and also

used to allocate dynamic memory.

This is dynamic allocation of single variable

 int * p = new int; // dynamic integer, pointed to by

 *p = 10; // assigns 10 to the

dynamic integer

cout<< *p; // prints 10

This is for set of array

double * numList = new double[size]; //

dynamic array

for (inti = 0; i< size; i++)

numList[i] = 0; //

initialize array elements to 0

numList[5] = 20; //

bracket notation

 *(numList + 7) = 15; //

pointer-offset notation

 //

means same as numList[7]

Gayathri Kandasamy Sengottaiyan, IJECS Volume 4 Issue 3 March, 2015 Page No.11119-11125 Page 11123

" There is a set of operators which are relate to dynamic

memory management lists six variations of operator new

and a matching operator delete for each. This paper will

only use the most basic variant."

7.1.SMART POINTER

In order to fix this issue the smart pointer is used let we

discuss in brief. In C++ memory leak is caused by misuse of

the pointers. There may have chance the user may forgot to

delete the pointer after using this, it is not wise idea to

delete pointer explicitly because it cause overhead to the

programmer. So we need a solution which automatically

recover the memory after it has done the job. That means is

smart pointer.

The smart pointer are look like a pointer it has same

properties like dereferencing and referencing and it also

had added advantage that it can also be an object, "so it can

call constructor and destructor "

class Jack

{ int age;

char* name;

public:

Jack(): name(0),age(0)

 { }

Jack(char* name, int age): name(name), age(age)

 {}

 ~Jack() {}

void Display()

{printf("Name = %s Age = %d \n", name, age); }

void Shout()

 { printf("Ooooooooooooooooo",);}

};

void main()

{

 Person* ja = new Person("Scott", 25);

ja->Display();

delete ja;

}

In this case we should explicitly remove the pointer after

it has done in the above program name is not deleted so it

will occupy the memory. So we need the pointer to handle by

itself.

The smart pointers are used by using operator

overloading.

class SPEX

{

private:

 Person1* pData; // pointer to person class

public:

SPEX(Person1* pValue) : pData(pValue){}

 ~SPEX(){ // pointer no longer requried; delete pData;}

 Person& operator* () { return *pData; }

 Person* operator-> () { return pData;}};}

void main()

{

 SPEX<PERSON1>p(new Person("Scott", 25));

p->Display();

 {

 SPEX<PERSON1> q = p;

 q->Display();

 // Destructor of Q will be called here..

 }

p->Display();

}[7]

Here as soon as the scope ends the corresponding

destructor will be called and the memory will be destroyed.

auto pointer is an efficient smart pointer which holds the

address of another object it will de allocate the object when

the object goes out of scope.

7.2.ISSUES IN AUTO POINTER

The auto pointer has some limitation it has to transfer

the ownership and destruct the copy. To overcome this we

can implement the pointer with counter if one pointer points

the same object the counter should increment and if any

other pointer lost the ownership the counter need to be

decrement and make the pointer to point any other object.

when the counter reach 0 it should delete the object which it

points[2].

7.3.RAII

"Resource Acquisition Is Initialization (RAII)[4] is

a programming idiom used in several object-oriented

languages, most prominently C++". RAII is first developed

in C++ and later it has been used by many programming

languages. This will tie with the object scope or "lifetime", it

will manage the memory based on the scope. It is not a

garbage collector which resides on time, resource is

allocated at the time of object created and it will be de

allocated when the object scopes ends.

8.DYNAMIC MEMORY MANAGEMENT IN JAVA

java has very great advantage through garbage

collector. So the programmer no need to get worry about the

memory problems such as creating the memory and

removing it explicitly.

8.1.WORKING OF GARBAGE COLLECTOR

There is a misunderstanding in working of garbage

collector. The garbage collector tracks the object which are

alive and it stores the rest of the object in "designate

garbage". It will not kill the dead object.

In dynamic allocation the memory area used is heap,

this has done by the operating system as soon as dynamic

allocation starts, this can be easily managed by the JVM

and it also have some of the advantages. The first one is it is

not needed to synchronize with the operating system

http://en.wikipedia.org/wiki/Programming_idiom
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/C%2B%2B

Gayathri Kandasamy Sengottaiyan, IJECS Volume 4 Issue 3 March, 2015 Page No.11119-11125 Page 11124

globally at each time of creating object. Because the object

creation is followed by the successive pointer. Second thing

is if the object is not used for long time it automatically

reused so there is no overhead of explicit deleting.

As said in this paper before in heap the objects can only

be referred. So as far as the object is referenced in the

memory JVM consider the object alive if not the memory

can be used by other object that is dead.

Java always create object in heap, let see through some

example how it is working

public class CoffeeMaker {

publicCoffeeMaker(){} }

CoffeeMakeraCoffeeMaker; aCoffeeMaker = new

CoffeeMaker();

int sugar = 4;

Integer sugarObject = new Integer(3);[6]

The memory allocation of the above program, there are

two classes coffeemaker is the user defined class and Integer

is the default class. So the object of the two classes will

resides in the heap and the values will resides in the stack.

java variables which are in heap can be access through only

the reference variable, Since in heap the values are

referenced.

8.2.NULL VALUE

In java if the object is not pointing to any of the object

then it is initialized to null which throws some exception. So

the object which is not used has to be nullify by its

reference. But in case of C++ it is considered as a macro

and it does not point to any object.

8.3.SWEEPING GARBAGE

To detect which dead object JVM has the algorithm to

collect the dead object, the algorithm is mark and sweep

algorithm. The algorithm start its search from the "GC" root

and mark the memory which are referenced by the object

and the memory which are free collect as memory for reuse.

8.4.ISSUES IN GARBAGE COLLECTOR

The garbage collector collects the memory which is not

used but it does not delete reference in heap. The garbage

collector is successful in deleting object from memory but

the value of the pointer remains it results in dangling

pointers some time. This situation occurs in multithread

condition. "Real-Time Java therefore supports two kinds of

threads: real-time threads, which may access and refer to

objects stored in the garbage-collected heap, and no-heap

real-time threads, which may not access or refer to these

objects. No-heap real-time threads execute asynchronously

with the garbage collector; in particular, they may execute

concurrently with or suspend the garbage collector at any

time. On the other hand, the garbage collector may suspend

real-time threads at any time and for unpredictable lengths

of time"[3].This technique try to give memory control to the

programmer Real Time Java has implementation model you

can refer this paper for more details.

9.DESTRUCTOR AND FINALIZER

we know both the language has similar functions in most

cases since both are object oriented language in order to

clear the function or value from memory before it removed

automatically by operating system we have destructor in

C++ and finalizer in java. Both are responsible for clear

the memory but still it has some difference. Let we see

through example

"classCPPdeallocate {

public :

CPPdeallocate (): _p(new int ())

{

};

~ CPPdeallocate ()

{

delete _p;

}

private :

int * _p;

};"[1]

Here the pointer is used for dynamic allocation when the

cppdeallocte() has been called the object will call the

destructor and it delete the memory and other resource

which was hold by this object.

If in case of java the use of finalizer is not as efficient as

destructor since it is "undefined". If you see this code.

"public class JavaFinalize {

private static void work () {

myresource t = new myresource ();

}

public static void ptime (String info) {

System .out .println (info + " : " +

System .currentTimeMillis ());

}

private static void sleepwell (long m) {

try {

Thread .sleep (m);

} catch (Exception e) { }

}

public static void main (String args []) {

ptime (" Start ");

work ();

ptime (" sleep ");

sleepwell (2000);

ptime (" sleep done ");

System .gc ();

ptime (" End ");

}

}

classmyresource {

protected void finalize () throws Throwable

{

JavaFinalize .ptime (" finalizer ");

super .finalize ();

}

}"[1]

In this program the finalizer that is system.gc() called

after the sleep. so the object is delete after some time mean

while the program will terminate so there is no use of

finalizer here. So the finalizer is not used as destructor in

C++. In other words java finalizer is not reliable.

Gayathri Kandasamy Sengottaiyan, IJECS Volume 4 Issue 3 March, 2015 Page No.11119-11125 Page 11125

10.CONCLUSION

When compare the two languages such as C++ and

JAVA, both have some sort of advantages and did

advantages. C++ is said to have more memory leaks it can

controlled by some point with smart pointer and RAII. These

techniques are implemented manually or it is semi

automated but there should be a technique which is fully

automated like Java.

As we see in Java garbage collector is fully automated

but sometimes like in multi threading it creates "Dangling

pointer" reference. The next thing the garbage collector has

to search and collect the memory from heap it will slow

down the process and that hence Java is not as powerful like

C++ which is faster than Java. So the technique has to

improve in java as in performance level and some of the

research like "RTJ(Real Time Java)" has try to solve this

real time problems. Still in C++ automation is needed for

memory management which should not compromise

language efficiency.

11.Conflict of Interest

 There is no

conflict of interest

REFERENCES

[1]. Aspects of Memory Management in Java and

C++ Emil Vassev, Joey Paquet Department of

Computer Science and Software Engineering

Concordia University Montreal, Quebec, H3G 1M8,

Canada {i_vassev, paquet}@cse.concordia.ca[1]

[2]. A practical comparison of the Java and C++

resource management facilitiesMarkusWinand 2003-

02-08

[3]. An Implementation of Scoped Memory for Real-

Time Java William S. Beebee, Jr. and Martin Rinard

[4].http://en.wikipedia.org/wiki/Call_stack

[5].http://www.artima.com/insidejvm/ed2/jvm8.html

[6].http://javabook.compuware.com/content/memory/im

pact-of-garbage-collection-on-performance.aspx

[7].Object Oriented Memory Management

(Java and C++)

 http://bd-things.net/object-oriented-memory-

management/

