Comparison between PMC AND AMC

Madhusudan A. Mohite¹, Tirupati L.Iltapawar², Krunal P.Rane³

¹ D.Y.Patil Institute of Technology, Kolhapur sudan_d@yahoo.co.in

²GIT, Lavel. <u>tliltapawar@git-india.edu.in</u>

³GIT, Lavel.

kprane@git-india.edu.in

Abstract: To develop new materials with desirable electro-magnetic properties those are not currently available to microwave engineers. One unifying theme of the materials should be moderately low loss magnetic materials for microwave applications. Specific properties we have investigated are impedance matched materials, tuned enhanced permeability, reactive impedance surfaces, and negative permeability electromagnetic band-gap materials.

Keywords: Perfect ground Plane (PGP), Perfect Magnetic Ground Conductor (PMC), artificial magnetic conductor (AMC).

I RELEVANCE

Microstrip or patch antennas are becoming increasingly useful because they can be printed directly onto a circuit board. They are becoming very widespread within the mobile phone market. Recent advances in wireless communications systems, such as GSM and DCS in Europe, PCS in America, wireless local eddy area networks (WLAN)[22], wireless local loops (WLL), future broadband 3G systems and etc., have instigated a flurry of interest in microstrip antennas. This is mainly due to the unique features of microstrip antennas They are low cost, have a low profile and are easily fabricated. A microstrip antenna consists of conducting patch on a ground plane separated by dielectric substrate. This concept was undeveloped until the revolution in electronic circuit miniaturization and large-scale integration in 1970[22]. After that many authors have described the radiation from the ground plane by a dielectric substrate for different configurations.

Zhang *et al.* [2] introduced a simple approach for solving the AMC structure shown in Fig. 1. Their approach is based on a simple equivalent circuit model for the periodic patch antennas. This circuit consists of capacitive resistive loads connected by transmission line sections. These capacitive resistive loads correspond to the capacitance effects between the patches and the resistance is due to the radiation effects from the edges of these patches. However, the main disadvantage of their model is that it can be used only for normal incidence.

Clavijo *et al.* [2] introduced another approach for simulating mushroom type AMC surface. Their model is based on approximating the patches as a shunt capacitive load along multilayered transmission line sections.

D. Qu, L. Shafai and A. Foroozesh [2] stated that parametric studies are conducted to maximize their impedance bandwidths and gains. It is found that very wide bandwidths, of around 25%, can be obtained by variation of the original antenna and EBG parameter. Their gains are similarly increased.

Tian Hong Loh [18] concluded in his paper that a theoretical study, design approaches and the applications of mushroom-like High Impedance Surface Electromagnetic Band Gap (HIS-EBG) meta materials in antenna engineering. A tunable HIS-EBG structure is represented by a novel analytic equivalent transmission line circuit model for surface wave propagation. The analytical and numerical simulations and a parametric study on the effects of patch width, gap width, substrate thickness and substrate permittivity.

II AMC Cell & Periodic Array Design Constrictions details

Madhusudan A. Mohite¹ IJECS Volume 4 Issue 3 March, 2015 Page No.10846-10850

Figure1 Constructional view of AMC Cell

Material Height	1.59mm
Copper height	0.05mm
Via material	copper
Via process	PTH
Via tolerance	50micron
Plating	Green mask
Plating dielectric	1.005
Plating thickness	30micron

Table 1 Single cell Specifications

III Construction of AMC periodic structure

The Periodic array-cell of an AMC-structure consists of a square patch, a metallic ground plane, via connected between the patch and the metallic ground plane, and a square block of substrate. It operates at frequencies where the periodicity is small compare to the operating wavelength of incident waves. In Figure 5.4, the parameters of the AMC structure: w, g, D, h, εr , μr , r, wp, Lp are respectively, the width of the patch, the gap width between adjacent patches, the lattice constant, the substrate thickness, the permittivity and permeability of the material surrounding the AMCEBG, the substrate permittivity, the substrate permeability and the radius of the vertical conducting Via.

These parameters can be used to tailor the characteristics of the surface impedance. For example, by applying a texture to a metal surface, one can alter the electromagnetic boundary condition of the metal surface and, hence, its surface impedance, thereby changing its surface wave properties [18].

A. Theoretical Design

Figure 3 Artificial Magnetic Ground Planes analysis [E]

Figure 4 Simulated Return Loss (S11) of PMC

Figure 5 Measured Return Loss (S11) of PMC

РМС	Central frequency	Start	Stop	BW
Simulated result	2.43 GHz	2.41GHz	2.46GHz	50 MHz
Measured result	2.49 GHz	2.45GHz	2.55GHz	105MHZ

Table 2 Simulated and Measured Results of PMC

Figure 8 Measured result of Smith chart on VNA

Figure 6 Shows directivity of PMC antenna.

Figure 10 Measured VSWR result of PMC

Results	VSWR	Smith Chart
Simulated	1.22	50.0+0.04j
Practical	2.445	39.34-24.38j

Table 3 Comparison of simulated and practical results

Figure 11 Practical result of Return Loss (S11)

	Simulated	Measured	REMARK
PMC & AMC comparison Center	1.06	1.15	VSWR Improvement is achieved in AMC antenna
frequency VSWR	1.1	1.19	Both simulated & measured results are closely matched

Figure13 Simulated smith chart of AMC

Figure 14 Pratical results of smith chart of AMC

Figure 15 Radiation Patter smith chart of AMC

B Comparison between Two antennas

Due to amc stracture clean response is achived .The amc only support domieniant mode & reduce the higher order mode .AMC pattern are placed around the radiatting and non raddationg edge of microstrip antenna. The perodicity of stracture are equally & uniformally spaced across the substrate. For better condictivity, the amc pins are plated using ENIG gold(nikel and tin are the option for plating).The return loss are improved due to cummlative effect of perfect magnatic conductor. The amc are having inductance in the range of nH(it is according to 2.4GhZ)

Table 4 Comparison of Simulated and Measured Results

IV. References:

[1] P. Salonen, F. Yang, Y. Rahmat-Samii and M. Kivikoski, "WEBGA – Wearable electromagnetic band-gap antenna", Proc. IEEE AP-S Dig., vol. 1, June 2004, pp. 451 – 454

[2] F. Yang and Y. Rahmat-Samii, "Reflection phase characterization of an electromagnetic band-gap (EBG) surface," in Proc. IEEE AP-S Dig., vol. 3, June 2002, pp. 744–747.

[3] Y. Zhang, J. von Hagen, M. Younis, C. Fischer and W. Wiesbeck, "Planar artificial magnetic conductors and patch antennas", IEEE Trans.Antennas Propagate., vol. 51, pp. 2704-2712, Oct. 2003. 4] A. P. Feresidis and J. C. Vardaxoglou, "High gain planar antenna sing optimized partially reflective surfaces," *IEE Proc. Microw. ntennas Propag.*, vol. 148, no. 6, pp. 345-350, Dec. 2001.

5] S.Clavijo, R.E.Diaz and W.E.Mckinzie "Design Methodology for ievenpiper high impedance surfaces: An artificial magnetic onductor for positive gain electrically small antennas" IEEE rans.Antennas Propagat., vol. 51, pp. 2678- 2690, Oct. 2003.

6] Sharma, S.K., and Shafai, L.: 'Enhanced performance of an perturecoupledrectangular micro strip antenna on a simplified nipolar Compact photonic band gap (UC-PBG) structure'. Proc. EEE Symp.on Antennas and Propagation, July 2001, Vol. 2, pp. 8–2

7] Satish K. Sharma1 and Lotfollah Shafai21San.: "Microstrip and Printed Antennas Printed Antennas" for Wireless Communications Diego State University, USA2University of Manitoba, Canada, page no.251-219.

[8] D. Qu, L. Shafai and A. Foroozesh IEE Proc.-Microw. Antennas Propag.Improving micro strip patch antenna performance using EBG substrates Vol. 153, No. 6, December 2006

[9] Garg, R., Bhartia, P., Bahl, I., and Ittipiboon, A.: 'Microstrip antenna design handbook' (Artech House, Boston, London, 2001)

[10] Bhalla, R.: 'Analysis of broadband and dual band microstrip patch antennas'. MSc thesis, University of Manitoba, Winnipeg, Canada August 2001

[11] Joannopoulos, J.D., Meade, R.D., and Winn, J.N.: 'Photonic crystals molding the flow of light' (Princeton University Press, Princeton, NJ, 1995).

[12] Coccioli, R., Yang, F.-R., Ma, K.-P., and Itoh, T.: 'Aperturecoupled patch antenna on UC-PBG substrate', IEEE Trans. Microw. Theory Tech., 1999, 47, 11)

[13] Gonzalo, R.,Maagt, P.D., and Sorolla,M.: 'Enhanced patchantenna performance by suppressing surface waves using photonicband gap substrates', IEEE Trans. Microw. Theory Tech., 1999, 47,