

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 4 Issue 3 March 2015, Page No. 10791-10798

Abhishek Chaudhary, IJECS Volume 4 Issue 3 March, 2015 Page No.10791-10798 Page 10791

Analysis of Use Cases and Use Case Estimation
1. Abhishek Chaudhary 2. Nalin Chaudhary 3. Aasiya Khatoon

Assistant Professor (C.S.E)
 M.Tech Scholar (C.S.E)
M.Tech Scholar (C.S.E)

Bhagwant University, Ajmer
abhishek02mar@rediffmail.com nalin23jan1990@gmail.com ashi.shiekh@gmail.com

Abstract- Use case analysis is a major technique used to find out the functional requirements of a software

system. Use case, an important concept in use case analysis, represents an objective user wants to achieve

with a system. It can be in text form, or be visualized in a use case diagram. There are different approaches

and methods to successfully estimate effort using use cases. This Paper describes use cases and how to write

them, and presents the Use Case Points method. It also describes related work on estimating with use cases.

Keywords: Use case, Use case point methods, software project estimation.

I. INTRODUCTION

 The term 'use case' implies 'the ways in which

a user uses a system'. It is a collection of possible

sequences of interactions between the system

under construction and its external actors, related

to a particular goal. Actors are people or computer

systems, and the system is a single entity, which

interacts with the actors [1].

The purpose of a use case is to meet the

immediate goal of an actor, such as placing an

order. To reach a goal, some action must be

performed [2]. All actors have a set of

responsibilities. An action connects one actor's

goal with another's responsibility [3].

A primary actor is an actor that needs the

assistance of the system to achieve a goal. A

secondary actor supplies the system with

assistance to achieve that goal. When the primary

actor triggers an action, calling up the

responsibilities of the other actor, the goal is

reached if the secondary actor delivers [3].

1. The Graphical Use Case Model

The use case model is a set of use cases

representing the total functionality of the system.

A complete model also specifies the external

entities such as human users and other systems

that use those functions. UML provides two

graphical notations for defining a system

functional model:

 The use case diagram depicts a static view

of the system functions and their static

relationships with external entities and

with each other. Stick figures represent the

actors, and ellipses represent the use cases.

See figure 1.

 The activity diagram imparts a dynamic

view of those functions.

http://www.ijecs.in/
mailto:abhishek02mar@rediffmail.com
file:///D:/ashiya/mtech/3rd-sem/paper/EXTRA
file:///D:/ashiya/mtech/3rd-sem/paper/EXTRA
mailto:ashi.shiekh@gmail.com

Abhishek Chaudhary, IJECS Volume 4 Issue 3 March, 2015 Page No.10791-10798 Page 10792

The use case model depicted in Figure 1 is the

model of an hour registration system. The user

enters user name and password, is presented with

a calendar and selects time periods, and then

selects the projects on which to register hours

worked.

2. Scenarios and Relationships

A scenario is a use case instance, a specific

sequence of actions that illustrates behaviors. A

main success scenario describes what happens in

the most common case when nothing goes wrong.

It is broken into use case steps, and these are

written in natural language or depicted in a state

or an activity diagram [4].

Different scenarios may occur, and the use case

collects together those different scenarios [1].

Use cases can include relationships between

themselves. Since use cases represent system

functions, these relationships indicate

corresponding relationships between those system

functions. A use case may either always or

sometimes include the behaviour of another use

case; it may use either an 'include' or an 'extend'

relationship. Common behaviour is factored out in

included use cases. Optional sequences of events

are separated out in extending use cases.

Figure 1: A graphical use case model

3. Generalization between Actors

A clerk may be a specialization of an employee,

and an employee may be a generalization of a

clerk and a group manager, see Figure 2 on the

next page. Generalizations are used to collect

together common behaviour of actors.

Figure 2: Generalization between actors

Abhishek Chaudhary, IJECS Volume 4 Issue 3 March, 2015 Page No.10791-10798 Page 10793

II. The Use Case Points Method

An early estimate of effort based on use cases can

be made when there is some understanding of the

problem domain, system size and architecture at

the stage at which the estimate is made [5]. The

use case points method is a software sizing and

estimation method based on use case counts called

use case points.

1. Classifying Actors and Use Cases

Use case points can be counted from the use case

analysis of the system. The first step is to classify

the actors as simple, average or complex. A

simple actor represents another system with a

defined Application Programming Interface, API,

an average actor is another system interacting

through a protocol such as TCP/IP, and a complex

actor may be a person interacting through a GUI

or a Web page. A weighting factor is assigned to

each actor type.

 Actor type: Simple, weighting factor 1

 Actor type: Average, weighting factor 2

 Actor type: Complex, weighting factor 3

The total unadjusted actor weights (UAW) is

calculated by counting how many actors there are

of each kind (by degree of complexity),

multiplying each total by its weighting factor, and

adding up the products. Each use case is then

defined as simple, average or complex, depending

on number of transactions in the use case

description, including secondary scenarios. A

transaction is a set of activities, which is either

performed entirely, or not at all. Counting number

of transactions can be done by counting the use

case steps. Use case complexity is then defined

and weighted in the following manner:

 Simple: 3 or fewer transactions, weighting

factor 5

 Average: 4 to 7 transactions, weighting

factor 10

 Complex: More than 7 transactions,

weighting factor 15

Another mechanism for measuring use case

complexity is counting analysis classes, which can

be used in place of transactions once it has been

determined which classes implement a specific

use case [6]. A simple use case is implemented by

5 or fewer classes, an average use case by 5 to10

classes, and a complex use case by more than ten

classes. The weights are as before. Each type of

use case is then multiplied by the weighting

factor, and the products are added up to get the

unadjusted use case weights (UUCW).

The UAW is added to the UUCW to get the

unadjusted use case points UUPC):

UAW+UUCW=UUCP

2. Technical and Environmental

Factors

The method also employs a technical factors

multiplier corresponding to the Technical

Complexity Adjustment factor of the FPA

method, and an environmental factors multiplier

in order to quantify non-functional requirements

such as ease of use and programmer motivation.

Abhishek Chaudhary, IJECS Volume 4 Issue 3 March, 2015 Page No.10791-10798 Page 10794

Various factors influencing productivity are

associated with weights, and values are assigned

to each factor, depending on the degree of

influence. 0 means no influence, 3 is average, and

5 means strong influence throughout. See Table 1

and Table 2.

The adjustment factors are multiplied by the

unadjusted use case points to produce the adjusted

use case points, yielding an estimate of the size of

the software. The Technical Complexity Factor

(TCF) is calculated by multiplying the value of

each factor (T1- T13) by its weight and then

adding all these numbers to get the sum called the

T-Factor. The following formula is applied:

TCF = 0.6 + (0.01* T-Factor)

The Environmental Factor (EF) is calculated by

multiplying the value of each factor (F1-F8) by its

weight and adding the products to get the sum

called the E-Factor. The following formula is

applied:

EF= 1.4 + (-0.03 * E-Factor)

The adjusted use case points (UPC) are calculated

as follows:

UPC= UUCP*TCF*EF

3. Problems with Use Case Counts

There is no published theory for how to write or

structure use cases. Many variations of use case

style can make it difficult to measure the

complexity of a use case [7]. Free textual

descriptions may lead to ambiguous specifications

[8]. Since there is a large number of

interpretations of the use case concept, Symons

concluded that one way to solve this problem was

to view the MkII logical transaction as a specific

case of a use case, and that using this approach

leads to requirements which are measurable and

have a higher chance of unique interpretation.

Table 1: Technical Complexity Factors

Table 2: Environmental Factors

Abhishek Chaudhary, IJECS Volume 4 Issue 3 March, 2015 Page No.10791-10798 Page 10795

III. WRITING USE CASES

The use cases of the system under construction

must be written at a suitable level of detail. It must

be possible to count the transactions in the use

case descriptions in order to define use case

complexity. The level of detail in the use case

descriptions and the structure of the use case have

an impact on the precision of estimates based on

use cases. The use case model may also contain a

varying number of actors and use cases, and these

numbers will again affect the estimates [9].

 The Textual Use Case Description

The details of the use case must be captured in

textual use case descriptions written in natural

language, or in state or activity diagrams. A use

case description should at least contain an

identifying name and/or number, the name of the

initiating actor, a short description of the goal of

the use case, and a single numbered sequence of

steps that describe the main success scenario

[4].The main success scenario describes what

happens in the most common case when nothing

goes wrong. The steps are performed strictly

sequentially in the given order. Each step is an

extension point from where alternative behaviour

may start if it is described in an extension. The use

case model in Figure 1 is written out as follows:

--

Use Case Descriptions for Hour Registration

System

--

Use case No. 1

Name: Register Hours

Initiating Actor: Employee

Secondary Actors: Project Management System

 Employee Management

System

Goal: Register hours worked for each employee

on all projects the employee participates on

Pre-condition: None

MAIN SUCCESS SCENARIO

1. The System displays calendar (Default: Current

Week)

2. The Employee chooses time period

3. Include Use Case 'Find Valid Projects'

4. Employee selects project

5. Employee registers hours spent on project

 Repeat from 4 until done

6. The System updates time account

EXTENSIONS

2a. Invalid time period

 The System sends an error message and

prompts

 user to try again

--

This use case consists of 6 use case steps, and one

extension step, 2a.Step 2 acts as an extension

point. If the selected time period is invalid, for

instance if the beginning of the period is after the

end of the period, the system sends an error

message, and the user is prompted to enter a

different period. If the correct time period is

entered, the use case proceeds. The use case also

includes another use case, 'Find Valid Projects'.

This use case is invoked in step 3. When a valid

project is found by the Project Management

System, it is returned and the use case proceeds.

The use case goes into a loop in step 5, and the

employee may register hours worked for all

projects he/she has worked on during the time

period. The use case 'Find Valid Employee' is

extended by the use case 'Add Employee'.

Abhishek Chaudhary, IJECS Volume 4 Issue 3 March, 2015 Page No.10791-10798 Page 10796

--

Use case No. 2

Name: Find Valid Employee

Initiating Actor: Employee

Secondary Actor: Employee Management System

Goal: Check if Employee ID exists

Pre-condition: None

MAIN SUCCESS SCENARIO

1. Employee enters user name and password

2. Employee Management System verifies user

name and password

3. Employee Management System returns

Employee ID

EXTENSIONS

2a. Error message is returned

2b. Use Case 'Add Employee'

--

IV. RELATED WORK

Different methods for sizing object-oriented

software projects and computing estimates of

effort have been proposed over the last years.

Some of these methods are presented in the

following.

1. Mapping Use Cases into Function Point

Analysis

A method for mapping the object-oriented

approach into Function point analysis is described

by Thomas Fetke et al., [10]. The authors propose

mapping the use cases directly into the Function

point model using a set of concise rules that

support the measurement process. These mapping

rules are based on the standard FPA defined in the

IFPUG Counting Practices manual. Since the

concept of actors in the use case model is broader

than the concept of users and external applications

in FPA, there cannot be a one-to-one mapping of

actors and users to external applications. But each

user of the system is defined as an actor. In the

same manner, all applications which communicate

with the system under consideration must also

appear as actors. This corresponds to Karner's use

case point method.

The level of detail in the use case model may

vary, and the use case model does not provide

enough information to how to count a specific use

case according to function point rules. Therefore,

as in Karner's method, the use cases must be

described in further detail in order to be able to

count transactions.

2. Use Case Estimation and Lines of Code

John Smith of Rational Software describes a

method presenting a framework for estimation

based on use cases translated into lines of code

[7]. There does not seem to be any more research

done on this method, although the tool 'Estimate

Professional', which is supplied by the Software

Productivity Center Inc, and the tool 'CostXpert'

from Marotz Inc. produce estimates of effort per

use case calculated from the number of lines of

code.

3. Use Cases and Function Points

David Longstreet of Software Metrics observed

that applying function points helps to determine if

the use case is written at a suitable level of detail

[11]. If it is possible to describe how data passes

from the actor to inside the boundary or how data

flows from inside the application boundary to the

actor, then that is the right level of detail,

Abhishek Chaudhary, IJECS Volume 4 Issue 3 March, 2015 Page No.10791-10798 Page 10797

otherwise the use case needs more detail. By

adopting both the use case method and the

function point’s method, the quality of the

requirement documents can be improved. Thus,

sizing and estimating is improved.

4. The COSMIC-FFP Approach

Over the last 15 years or so, advances have been

made towards a general Functional Size

Measurement (FSM) method for measuring real-

time software. Recently, the COSMIC FFP (Full

Function Points) method has been developed as an

improvement of the earlier function point

methods. It is designed to work for both business

applications and real-time software [12].

When sizing software using the traditional

function point methods, it is possible to measure

only the functionality as seen by the human end-

user.

The large amounts of functionality that must be

developed in today's advanced software systems

are invisible to the users and cannot be measured

by these methods. Using the traditional methods

may correctly size the functionality seen by the

user, but grossly undersize the total functionality

that actually has to be developed.

The Full Function Points (FFP) methodology is a

functional size measurement technique

specifically designed to address the requirements

of embedded and real-time software. The FFP

methodology is based on a 'unit of software

delivered' metric called the FFP point, which is a

measure of the functional size of the software. The

total FFP point of an application being measured

is called an FFP count.

Functional user requirements are decomposed into

`functional processes' which in turn can be

decomposed into `functional sub-processes'. The

functional processes are equivalent to the MKII

logical functions and also to use cases. The

method can therefore be used to size object-

oriented software.

V. CONCLUSION

This paper looks at the potential of successful

application of the use case point method for

estimating the size of software development

project. A use case point is a new method for

estimating software development. Advantage of

the use case based estimation is that use cases are

maintained with two-way traceable capability

using modern requirements management tools. In

conclusion, use case points method of effort

estimation is a very valuable addition to the tools

available for the project manager. The method

can be very reliable or just as reliable as other

effort estimation tools such as COCOMO,

function point and lines of code.

REFRENCES

[1] Alistair Cockburn. Writing Effective Use

Cases. Addison-Wesley, 2000.

[2] Charles Richter. Designing Flexible Object-

Oriented Systems with UML. Macmillan

Technical Publishing, 2001.

[3] Alistair Cockburn. Structuring use cases with

goals. Humans and Technology, 1997.

Abhishek Chaudhary, IJECS Volume 4 Issue 3 March, 2015 Page No.10791-10798 Page 10798

[4] John Cheesman and John Daniels. UML

Components, A simple Process for Specifying

Component-based Software. Addison-Wesley,

2000.

[5] Steve Sparks and Kara Kaspczynski. The art of

sizing projects. Sun World.

[6] Schneider and Winters. Applying use Cases.

Addison-Wesley,1998.

[7] John Smith. The estimation of effort based on

use cases. Rational Software White Paper, 1999.

[8] Martin Arnold and Peter Pedross. Software

size measurement and productivity rating in a

large-scale software development department.

Forging New Links. IEEE Comput. Soc, Los

Alamitos, CA,USA, 1998.

[9] Bente Anda, Hege Dreiem, Magne Jørgensen,

and Dag Sjøberg. Estimating Software

Development Effort based on Use Cases -

Experience from Industry. In M. Gogolla, C.

Kobryn (Eds.): UML 2001- The Unified Modeling

Language. Springer-Verlag. 4th International

Conference, Toronto, Canada, October 1-5, 2001,

LNCS 218, 2001.

[10] Thomas Fetke, Alan Abran, and Tho-Hau

Ngyen. Mapping the oo-jacobsen approach into

function point analysis. The Proceedings of

TOOLS, 23, 1997.

[11] David Longstreet. Use cases and function

points. Copyright Long street Consulting Inc.

www.softwaremetrics.com, 2001.

 [12] P.Grant Rule. Using measures to understand

requirements. Software Measurement Services

Ltd, 2001.

